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Abstract 
Customer’s buying decisions often depend on the costs which will accrue for the product 
during its whole life-cycle. In this paper a concept for reliability and availability based life-
cycle-cost analysis is shown. Thereby main emphasis is placed on the modelling techniques 
for performing this analysis. The basic elements of the methods, namely Markov process, 
alternating renewal process, system transport theory and extended coloured stochastic Petri 
nets, are demonstrated and their benefits and drawbacks are shown.  For the extended 
coloured stochastic Petri nets the modelling procedure is demonstrated on behalf of a generic 
example. This comprehensive methodology is able to model and analyse the logical, 
chronological and economical aspects as well as dependencies of the system reliability and 
maintenance. It enables to integrate all relevant aspects related to operation, aging and 
maintenance of a system, such as reliability structure, components with several operational 
states and general distributed failure times, failure dependencies, maintenance strategies and 
dependencies, queuing aspects and operational costs. 
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1. Introduction 
In many cases product lifetime does not end with the first occurring failure, since due to 
preventive and corrective maintenance activities the function of the product can be preserved 
for a longer time interval [1]. The quality of these so called repairable systems can be defined 
by their availability whereas the availability and the costs of a technical system are 
inseparably linked. The availability of a system can be increased by raising the maintenance 
activities and the reliability of its components, but the costs for these components arise 
likewise since a higher development effort as well as higher material quality is needed. The 
benefit of the higher availability can be nullified by the higher effort for achieving this 
objective. Therefore a unilateral approach might not lead to the desired result. The goal of a 
holistic analysis is to find the optimal design of a system for achieving the best possible rate 
for the availability at inserted costs. 

In this context the concept of life-cycle-cost (LCC) is gaining more and more recognition. The 
costs which arise at the start and during the planned operational period of a technical system 
impose a notable influence on investment decisions. Information about system failure 
behaviour during the operational period as well as about the used maintenance activities are 
needed to forecast the LCC. This demand on an analysis of repairable system caused the 
development of multiple methods for examination of reliability, availability and costs. The 
methods in the area of availability modelling of technical systems are often subjected to 
limitations and simplifications [2].  
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In the following the concept of LCC as well as the benefit of certain models such as Markov 
process, alternating renewal process, system transportation theory and extended coloured 
stochastic Petri nets will be shown and compared.  

2. Basics and Definitions 

2.1 Reliability 
The reliability R(t) is the ability of a system or component to perform its required functions 
under stated conditions for a specified period of time t [3]. Therefore reliability describes the 
failure behaviour up to the first failure occurring. The mathematical description is based on 
the probability density function (pdf) f(t), the cumulative failure distribution function (cdf) 
F(t), with f(t) = dF(t)/dt, the reliability R(t) = 1 – F(t) and the hazard function (failure rate) 
λ(t) = f(t)/R(t).  

2.2 Exponential and Weibull Distribution 
An exponential life distribution is one wherein the failure rate is constant in time, possessing 
the pdf 

0,0,)( >λ≥λ= λ− tetf t , with λ = constant. (1) 

The exponential life distribution is best applied to analyse failures in the steady-state phase of 
the bath tub curve, during which the failure rate is constant. However, in most mechanical 
systems the failure rates of components like bearings, gearwheels or shafts are not constant. 
The failure of such components is often described by a three parametric Weibull distribution 
[1] 
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with b = shape parameter; T = characteristic lifetime (scale parameter) and t0 = failure-free 
time. The failure rate of the Weibull distribution is a function of time and therefore an 
increasing risk at higher lifetimes can be considered. With b = 1 and t0 = 0 the Weibull 
distribution is reduced to the exponential case with λ = 1 / T.  

Another characteristic quantity for describing the lifetime of components and systems is the 
expected life E(L), which is the expected value of a failure distribution, the so-called MTTF 
(mean time to failure). MTTF = 1/λ applies only to the exponential case.  

In general it can be calculated via the following integral 
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2.3 Availability 
If repair, maintenance and renewal processes are also taken into account the analysis of the 
system does not inevitably end with the first system breakdown. In most cases one has to deal 
with repairable systems where service interruptions occur and the systems is repaired after an 
arising failure.  
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Consider a stochastic point process with two possible states. One of the two states is 
numbered as 1 and called ‘operational’ and the other is numbered as 0 and called ‘failed’. 
With these definitions a so-called state indicator can be introduced: 

⎩
⎨
⎧

=
. at time          failed'' is system  theif    0

 at time l'operationa'  is system  theif    1
)(

t
t

tZ  (4) 

Figure 1 shows such a stochastic point process and the state indicator Z(t). Thereby the pdf 
f(t) describes the transition from 1 to 0 (failure) and the pdf g(t) the transition from 0 to 1 
(repair).  
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Figure 1.  An alternating stochastic point process.   

The availability (resp.: point-availability) A(t) is defined as the degree to which a system or 
component is operational and accessible when required for use [3] and can be obtained as 
expected value of the state indicator being in the state ‘operational’ (Z(t) = 1)  

))(()1)(()( tZEtZPtA === . (5) 

The steady state availability A∞ is an asymptotic value which can be calculated according to 

)(lim tAA
t ∞→∞ = . (6) 

To describe repairable systems it is essential to consider stochastic repair behaviour besides 
stochastic failure behaviour. Therefore distribution functions are used for specifying the repair 
behaviour as well as the failure performance. The corresponding functions and descriptions of 
the failure and repair behaviour are listed in table 1. 

Table 1. Description of the failure and repair behaviour. 

failure behaviour  repair behaviour  
failure density  f(t)  repair density g(t) 
failure probability F(t)  repair probability G(t) 
failure rate λ(t)  repair rate µ(t) 
reliability R(t)  -----   
expected lifetime MTTF  expected repair time MTTR 

3. Life-Cycle-Cost 
The period of time between purchase order, planning, design, production, operation and 
disposal or salvage is defined as a system’s life-cycle. During this life-span expenses 
accumulate consistently which have to be borne by the costumer directly, e.g. in case of 
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operational cost, or indirectly, e.g. in case of purchase cost. The sum of all these costs is 
defined as life-cycle-cost (LCC) [4]. 

The objective of a LCC analysis is to choose the most cost effective approach from a series of 
alternatives so that the lowest long-term cost of ownership is achieved. Thereby cost elements 
have to be considered which include planning, design, production, operation, maintenance, 
support, and final disposition of a system over its anticipated useful life span. LCC analysis 
helps evaluating systems based on total costs rather than the initial purchase price as the cost 
of operation, maintenance, and disposal cost exceed all other costs many times over [5].  

Reliability, maintainability and availability exert high influence on the costs which accrue 
during the operation of a system. For an evaluation of the use and the profitability of 
reliability measures the consideration of cost aspects are crucial.   

Decisions in early development phases cause little immediate costs, but they have a high 
effect on further life-cycle phases since they minimise the degree of freedom for later 
decisions [4]. Therefore a better part of later-on occurring costs is defined in early states, see 
figure 2a. 

The unavailability of a product can exert a high influence on its LCC since it might cause 
further cost, e.g. for production losses caused by system downtimes. Therefore the availability 
has to be optimised with regard to the associated LCC. The relation between availability and 
LCC is shown in figure 2b. High reliability and expeditious maintainability lead to high 
purchase cost and maintenance cost increase as well with a better established maintenance 
organisation. Investments in these two types of costs result in an ascending system availability 
whereas the costs occurring for system downtimes decrease with higher availability [1]. The 
optimum for cost based availability considerations can be found at the minimum of the sum of 
purchase, maintenance and system downtime cost, see figure 2b. 
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Figure 2.  a) Life-cycle-costs during system life-cycle [6] 
                                                            b) Simplified relation of availability and costs [1] 

Furthermore there exists a contradiction between the specification, the appearance or 
interference of costs and the state of knowledge of the system, meaning that decisions on the 
cost structure of the system have to be made when limited knowledge on the system 
behaviour exists [4]. Therefore analytical methods or simulation are suitable instruments to 
minimise this gap in one’s knowledge.  
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4. Methods for Repairable System Evaluation 
The failure behaviour as well as the behaviour concerning the repair process is characterised 
by stochastic processes [7]. Therefore it is possible to apply methods in form of stochastic 
analysis of the reliability and availability of repairable systems. The available models vary in 
their complexity significantly. Many of them work with restrictions limiting the possibility to 
model complex maintenance actions.  

In the following four different methods are discussed regarding their applicability to describe 
these aspects thoroughly. 

4.1 Markov process 
Repairable systems can be described in an analytic way by means of Markov modelling. The 
goal of this modelling technique is to determine the availability of the system as well as of the 
components themselves. 

The Markov method is based on the Markov process, a stochastic process containing a finite 
amount of states Z0, Z1, …, Zm. In this process the evolution for any point of time t depends 
only on the current state. The evolution up to this point of time is totally neglected [7],[8]. 

Therefore the following restrictions for repairable system modelling can be obtained: 

• the Markov process is independent in time and memory-less  

• after each maintenance measure the repaired component is as good as new 
The elementary Markov equations express a simple balance between the flow out of state i 
and into state i. This leads to a system of state differential equations which can be used to 
calculate the availability of the system or components as a function of time. 

The system’s behaviour with constant transition rates is well-known and described by Markov 
equations [9]. In general one speaks of transition rates instead of failure and repair rates. The 
transition rate from state i into j is denoted by αij. The probability of being in state i at time t 
is defined by the state probability Pi(t). A system with n possible system states yields to 2n 
differential equations of the form: 
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where αij and αji are constant transition rates that are independent of time.  
For example, the availability of a single component with exponential failure and repair 
distribution (two states 1: operational and 0: failed), see figure 3, arises from 

( )tetA µ+λ−

λ+µ
λ

+
λ+µ

µ
=)( . (8) 

Z1Z0 µ

λ
failure rate λ
repair rate µ

 

Figure 3.  Example of component with two states 
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The steady state availability can be calculated using eq. (5) as 

MTTRMTTF
MTTFtAA

t +
=

µ+λ
µ

==
∞→∞ )(lim . (9) 

If transition rates are not constant, it is impossible to calculate the availability by means of the 
elementary Markov method. According to the Markov model the future only depends on the 
present but not on the past. This means, that in this case constant transition rates are 
inevitable. For time dependent transition rates the elementary Markov method can only be 
applied to calculate the steady state availability A∞, but not the availability as a function of 
time. 

4.2 Alternating Renewal Process 
The alternating renewal process takes repair times and renewal times respectively into 
account. Therefore the situation shown in figure 4 can be modelled. The first component is 
placed into operation at time t = 0.  

time t

0

Z(t)
1

0

first placing into  
operation

repair
time τ0,1

1. component
lifetime τ1,1 

2. component
lifetime τ1,2 

repair
time τ0,2

failure failure
replacing into 

operation
replacing into 

operation

T0,0 = 0 T1,1 T0,1 T1,2 T0,2  

Figure 4.  Alternating renewal process 

The times τ1,n and τ0,n are following each other in an alternating way. The lifetimes and repair 
times are characterised by the parameters listed in table 1. The times which represent failure 
times are indicated as T1,n  and the points in time when the system is placed again into 
operation are marked as T0,n with the index 0. 

By applying Laplace transformation and geometric series expansion, the renewal density 
functions (rdf) h0(t) and h1(t) for the renewal points described by T0,n and T1,n are given by  

( )∫ ′′∗′−+∗=
t

ttgftthtgfth
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For corresponding renewal functions H0(t) and H1(t)  

( )∫ ′′∗′−+∗=
t

ttgfttHtgFtH
0

00 d)()()()(  and 

( )∫ ′′∗′−+=
t

ttgfttHtFtH
0

11 d)()()()(  
(11) 

 



7 

can be found with  

ttgttftgf
t

d)()()(*
0
∫
′

−′=′  (12) 

where the operator * means convolution. 

For the determination of the point availability three possibilities can be applied [9], [10]: 

Method I: The point availability can be gained as a special case of the interval reliability 
using the forward recurrence time by 

∫ ′′′−+=
t

tthttRtRtA
0

0 d)()()()( . (13) 

Method II: A second method for the calculation of the availability can be conducted without 
the use of the rdf in a recursive way  

( ) ttgfttAtRtA
t

′′∗′−+= ∫ d)()()()(
0

. (14) 

Method III: The difference between the renewal functions is equal to the unavailability, thus 

( ) )()(1)()( 10 tHtHtZEtA −+== . (15) 

By applying Laplace transformation it can be shown that all three methods provide the same 
point availability.  

The spare part demand can be determined by using the renewal function for failures H1(t). 
Thereby it can be found that  

2

22
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ttH
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is the asymptotic value of the renewal function H1(t) which can be used to estimate the spare 
part demand for long times. 

4.3 System Transport Theory 
To calculate the availability of non exponential distributed system behaviour a general state 
equation was suggested by Dubi [11]. Thereby a mathematic analogy between physical 
neutron transport in a medium and the failure and repair behaviour of a system in time has 
been found. The analogy is that a particle is moving in a three dimensional space colliding 
with other particles and thereby changing its state similar to a system changing its state in 
time. Considering the analogy between the physical neutron transport theory, described by the 
Boltzmann transport equation, and the behaviour of a reliability system in time, the so called 
event density ψi(t) is defined. This quantity describes the number of entries into a state i at 
time t in interval dt. ψi(t) fulfils the so called general state equation (transport equation)  

∑∫
≠
=

′′−α′−′ψ+δ=ψ
n

ij
j

t

jijjii tttttRttPt
1 0

0 d)()()()()(  (17) 

where Pi0 is the probability that the system starts at time t = 0 in state i, δ(t) is the Dirac delta 
function and αji is the system transition rate.  
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The probability of being in the state i at time t is given by  

∫ ′′−′ψ=
t

iii tttRttP
0

d)()()( . (18) 

The theory on these equations is usually used for the Monte-Carlo simulation of the 
availability and spare part allocation of complex systems. 

For a two state stochastic process as illustrated in figure 4 the event densities can be written as  

( )∫ ′′−∗′ψ+δ=ψ
t

tttfgttt
0
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Thereby it can be found for the general state equation ψ0(t) = h1(t), )(1 tψ(  = h0(t) and  

)(*)()()()()( 011 tgttttt ψ+δ=ψ+δ=ψ (  (20) 

where )(1 tψ(  is called truncated event density [11].  

For a component with n different states and i = 1 denoting the operational state the availability 
can be calculated by setting eq. (20) into eq. (18) 
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which leads to the same results as eq. (13).  

4.4 Extended Coloured Stochastic Petri Nets 
Petri nets are a formalisms to describe and study systems that are characterised by concurrent 
activities, synchronised activities, causal dependence (e.g. sequence) and conflicts (shared 
resources, decision, choice), inherent in complex technical systems [12].  

A Petri net is a graphical and mathematical modelling tool which consists of places, 
transitions, and arcs that connect them. They are a bipartite directed graph with input arcs 
connecting places with transitions and output arcs starting at a transition and ending at a place 
[13].  

Places represent in this context the states of components and the system. Places are drawn by 
circles and they might contain tokens. The current state of the modelled system (the marking) 
is given by the number (and type if the tokens are distinguishable) of tokens in each place. 

Transitions, drawn as squares, model activities which can occur (resp.: the transition fires) 
thus changing the state of the system, the condition or object, described by the marking of the 
Petri net. Transitions are only allowed to fire if they are enabled, meaning that all the 
preconditions for the activity must have been fulfilled (there are enough tokens of the right 
kind available in the input places). If a transition is enabled it may fire after waiting for a 
certain time delay in compliance with the attached distribution function. By firing, tokens 
according to the input functions are destroyed in each of the transition’s input places and new 
tokens are created in each output place according to the output functions of the fired 
transition. Hence transitions represent the intrinsic dynamic of systems. 
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As a graphical tool, Petri nets can be used to model complex systems and visualise their 
properties similar to flow charts or block diagrams. A variety of Petri net classes has been 
developed up to now. They differ mainly in the type of distributions, which can be used to 
describe time aspects and in the type of tokens. The distributions are often limited to 
exponential distributions, like for the generalised stochastic Petri net (GSPN). GSPNs use 
anonymous tokens, whereas coloured Petri nets (CPN) [14] use coloured tokens, which can 
incorporate data. Essential restrictions concerning the development of the age of a component 
in different states and the limitations to complete renewals and minimal repairs led to the 
extension of the CPN and the development of the extended coloured stochastic Petri nets 
(ECSPN). The ECSPN incorporates timed transitions (generally distributed (Weibull, normal 
exponential, lognormal,…), immediate and deterministic firing delays), component age 
information, queuing and cost elements. Different aspects of the system and components can 
be described inside their own thematic level with the help of references places and reference 
transitions.  A detailed description of the extensions of the ECSPN can be found in [15].  

4.5 Comparison of the Different Models 
In this chapter four different methods for availability modelling have been presented in form 
of Markov process, alternating renewal process, system transport theory and Petri nets. They 
possess different modelling power and they differ in the limitations and simplifications made 
in the description of the system properties and maintenance processes. 

Recapitulating, the following statements can be made: 

The ECSPN as well as the system transport theory are capacious methods. They are scarcely 
subjected to restrictions regarding the distribution functions for describing the state 
transitions, the number of modelled component-states, the number of components and their 
interactions. In most cases Monte-Carlo method has to be applied to receive a solution for 
both methods since finding analytic solutions is impractical [16]. The advantage of the Petri 
nets compared to the system transport theory is the demonstrative graphical modelling 
technique. 

The alternating renewal process also considers generally distributed failure and repair times, 
but it is restricted to the two states “operating” and “failed” and only complete renewals 
(component is “as good as new”) can be taken into account at every renewal point [2].  

The Markov method is restricted to exponentially distributed failure and repair times. But the 
results of this method can be calculated analytically. Another drawback is that modelling of 
big systems with a big amount of components is extensive since the number of modelled 
states is increasing highly with a rising number of components [1]. 

5. Example 
The applicability of ECSPN to technical system modelling will be presented in the following 
section by means of a simple example. The full list of declarations of the ECSPN is omitted in 
the example. Only the elementary pages of the entire net are presented. Thereby the variable i 
denotes the ID of the component (1 = component 1, 2 = component 2 or 3 = component 3), 
z denotes the state of the component (2 = passive, 1 = operational, 0 = failed, -1 = in repair), 
a is the age of the component and s presents the state of the system. 
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5.1 System level 
The system is made up out of three different components. Component C1 is in series to the 
redundant subsystem of component C2 and C3, see figure 5. The system is operating if 
component C1 and either component C2 or C3 are functioning.  

For the development of the ECSPN for the system states the methods for “minimal paths sets” 
and “minimal cuts sets” can be used. A valid “minimal cut” causes a transition from state 
“system operational” to the state “system failed” whereas a valid “minimal path” provokes a 
transition from state “system failed” to the state “system operational”. If e.g. component C1 is 
failed and unavailable transition tr3 is activated and the system state is changed from 
operational to failed. 

 

Figure 5.  Reliability block diagram and ECSPN of the system 

5.2 Component level 
Figure 6 shows the states of the components C1, C2 and C3. Place p10 represents the 
operational state and place p11 the passive state of C1. A request for a change of the state of 
component C1 is received from C2 or C3 by reference place rp12/p23 or rp13/p33 if they fail. 
Component C1 may fail either via state transition tr10 or tr11 whereby Weibull distributed time 
delays are attached to both transitions. After firing, the age at the time of failure is assigned to 
the token by the function AgeFire, and the component state z is set to 0, see input arcs of p12. 
Then the component is sent to corrective maintenance via reference place rp16/p50. If a failure 
of component C1 occurs, the components C2 and C3 are requested to step into state “passive”. 
After the maintenance measure is finished, the component is reconnected into state 
“operating”. This is managed by the guard function of the transitions tr10 [i=1], tr20 [i=2] and 
tr30 [i=3]. Concurrently, the other two components are requested to return into state 
“operational” by a token in place p21 and p31. 

System 
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Figure 6.  ECSPN of component C1, C2, C3 and attached maintenance process 

5.3 Maintenance level 
Figure 6 shows the maintenance process for component C1, C2 and C3. Every maintenance 
order is set into place p51. According to the value of the component ID, the component is 
allocated to one of three different corrective maintenance measures. The repair times for all 
three components are exponentially distributed as denoted for transitions tr51, tr52 and tr53, but 
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they possess different distribution parameters and varying degrees of renewal (ε1 = 0,5; 
ε2 = 0,7; ε3 = 0,3). The degree of renewal defines the quality of the maintenance actions 
whereas the age of the component after the repair or maintenance is given by 

Age(tenter) = Age(texit) · (1 − ε) (22) 

with 0 ≤ ε ≤ 1, where texit = time of failure and tenter = time of reconnection. The maintenance 
activities can be classified by using a degree of renewal ε into minimal repair (ε = 0), repair 
with partial renewal (0 < ε < 1), and complete renewal (ε = 1) [15]. 

5.4 Cost Level 
The operational costs can be accumulated in a separate level using the corresponding 
reference places and reference transitions. They are connected with the cost places and cost 
transitions in order to accumulate the costs in the desired cost centres multiplied with the cost 
factors, which are used to determine the amount of the types of cost. Thereby costs can accrue 
per time or per action. In this example the values of the cost factors refer to the operation of 
the system and its components and the maintenance actions. 

Thereby it is possible to calculate operational cost in dependency of components reliability, 
system structure and maintainability to compare them with the development and purchase cost 
for the modelled system setups to find the cost optimum of reliability and maintenance cost 
and costs due to system downtimes. 

6. Conclusions 
In this paper four models to evaluate repairable system as basis for LCC analysis were 
presented in respect to their theoretical principles and required modelling elements. These 
four models, namely Markov process, alternating renewal process, system transport theory 
and ECSPN, were valuated regarding their modelling power. For the last presented method, 
the ECSPN, an example of the modelling procedure for a system with mixed system structure 
was given. The example system demonstrated the power of this modelling procedure for its 
application in the field of lifetime management. The major advantage of this approach is the 
possibility to easily model complex systems without any restriction to the used failure 
behaviour of the system elements and the maintenance processes like different maintenance 
strategies or restricted maintenance personnel.  

However, a greater part of the information required for these calculations is not available until 
late in the development process. Therefore in early phases of the production process historic 
information that is normally available in company databases or through rough estimates can 
be used for these considerations [17], whereas reliability, maintainability and maintenance 
supportability data shall be systematically collected throughout the whole system life-cycle 
for future use in reliability and regularity prediction [18].   

Collected regularity and reliability data should be analysed for trends and problems that may 
require corrective action, see figure 7. A programme of post-design improvements should be 
considered whenever poor reliability results in unacceptable production shortfalls, 
maintenance costs or risk to personnel arise [17]. 
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Figure 7.  Availability based design process 

The experience and information from the operational phase of the product should also be 
transferred to divisions involved in the design phase in order to stimulate improvements in 
design of new products. This includes a review and verification of assumptions made to the 
predictions in the planning and design phase in comparison to actual field conditions 
experienced during operation, see figure 7. 
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