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Abstract 
Globalization of industry and the manufacturing environment is spurring intensification of 
international competition in the designing products. This inevitably causes the changes in the 
style and characteristics of design activities. We have already proposed a methodology for 
quantitative estimation of design load and efficiency in our previous work. 
In this paper, we survey the design processes for professional-use devices and discuss recent 
design process innovation by introducing an index to measure the efficiency of design 
optimization. This progress is explained as the transition of design type from “fulfilling the 
design requirements” to “searching for the optimum design solution.” For the latter design 
type, rational decision making at the early design stages is particularly important for 
achieving the optimum design solution efficiently. In this context, finally, the influence of 
uncertainty in decision making on design time is quantitatively evaluated by treating it as a 
probability density function, in conjunction with the proposed estimation methodology. We 
name the quantitative approach shown in this paper “Design Process Assessment,” and we 
aim to systematize it in order to analyze and optimize design processes based on rational 
indices. 

Keywords: Shannon’s entropy, Taguchi Method, D-efficiency, Analytic Hierarchy Process, 
Design Process Assessment 

1. Introduction 
Recently, advances in the performance of personal computers have been remarkable. 
Simultaneously, low-priced CAE tools have also been introduced that are user-friendly not 
only for CAE specialists but also for designers or CAE novices. In view of these 
developments, the rational and optimized usage of CAE tools is crucial for efficient product 
development. 
In accordance with this progress of the CAE environment, design support methodologies and 
tools are being actively studied. Design for X [1], which is a system of strategic design 
techniques, and Six SigmaTM [2] are well-known examples of such methodologies. 
In addition, design methods and tools to perform CAE simulation according to optimization 
algorithms [3] are also entering widespread use. 
As described above, design and development processes in actual design fields are improving 
steadily through the following two steps: 
  1. Spread of CAD/CAE 
  2. Spread of design optimization methods/tools 
However, it is difficult to apply these tools and methods efficiently based on quantitative 
indices. 
To address this subject, we have proposed an evaluation method based on information 
engineering techniques to relate the total design period and probabilities of correct decisions 
of design variables and alternatives [4]. As a result, the reduction of design period by the 
improvement of probability was evaluated quantitatively at every design stage. 



Consequently, designers can efficiently improve their design processes. We introduce these 
results briefly in section 2. 
In this paper, in analyzing design processes, we focus on how design processes have been 
improved in the past several years. Through this analysis, in section 3 we aim to clarify how 
design support methods affect the design period and how they change the style of design 
activities. 
In this evolution of design processes, it is also difficult to discuss the improvement of design 
processes in terms of a concrete index. To address this issue, we adopt an index called “D-
efficiency” which represents the coverage and efficiency of searching in the design variable 
space and discuss the relation between this index and progress of design efficiency. 
In regard to the background of the recent evolution of design processes, we explain the 
transition of design process by taxonomical analysis of design types in section 4. 
Finally, we also show the importance of rational decision making for efficient product 
development by treating uncertainty as a probability density function. 

2. Previous work – Approach for quantitative estimation of design 
load and efficiency 

The design task is a process to reduce the ambiguity of the total system of decision making 
with regard to design alternatives and parameters. In this context, we proposed a methodology 
to measure load and efficiency of design [4] by introducing one of the basic information 
theories, namely, the formula of Shannon’s entropy [5], and derived a simple expression for 
quantitative estimation of design complexities. 

2.1 Theoretical basis 
Shannon’s entropy is an index used to measure uncertainty of discrete random variables. The 
entropy is defined from probability distribution of variables by Shannon’s formula (eq. 2.1). 
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H is called Shannon’s entropy of information and its unit is bit. pi (i: natural number between 
1 and n) is the probability distributions that satisfy: 
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In the context of design processes, the probability distribution exists at the choice of design 
alternatives. If designers have n number of alternatives, and do not have any information 
regarding which one to choose, the probability of selection of each alternative equals 1/n, and 
its entropy is maximized. 
However, once information is obtained, for example, results of experiments and/or computer 
simulations, designers can choose one of the alternatives more confidently, and as a result, the 
probability distribution changes to an uneven one. This reduces the entropy. 

2.2 Expression of branching structure of design processes 
We classified branches in design processes into two types (See the lower right of Figure 1): 
 
• Alternatives: The branch for selection of one alternative. 
• Modules: The set of design units to be processed independently and/or in parallel. 

 



By composing these two branch types, complex branching structures of actual design 
processes can be expressed as shown in Figure 1. Where, p1, p2 means the probabilities 
assigned for alternatives, “DPs” means the design parameters to be determined at each 
alternative, and M1 - M3 means modules. 
Entropies on branches of modules are simply summed, and entropies on branches of 
alternatives are calculated following eq. 2.1. Entropy of multilayer branching structure can be 
calculated recursively by eq. 2.2. 
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Where, l is the number of layer levels counted from top level. Hl +1, j is the entropy of j th 
alternative on the l +1 th level. 
nl is the number of alternatives belonging to the objective branch on level l. The first member 
of right side of eq. 2.2 is the entropy of the probability distribution ),,( ,1, lnll pp L calculated 
from eq. 2.1. 
Eq. 2.2 is important from the viewpoint of practicality and utilized later for evaluation of 
design period in section 5.2. 
We also introduce the “assumption of symmetry” to the branch where the complete structure 
of all alternatives is unknown. Namely, we assume that if one alternative has been chosen on 
a certain branch, other (uninvestigated) alternatives would have the same degree of 
complexity. Of course, this assumption is not necessarily true in actual design stages. 
However, from the standpoint of statistical analysis of design activities, we think this 
assumption is rational. Owing to this assumption, if a completed design process is 
investigated and one final set of alternatives and design parameters are analyzed, the total 
entropy of design processes can be roughly estimated. 

2.3 Conversion of entropy into time or cost 
As the final step of practical application of information theory to evaluation of the design 
process, time constant k and cost constant kc are introduced as shown below. 
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Figure 1. Expression of branching structure of design process 
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Where, T is the time needed to process design task and C is the cost to process design task. 
Here, we name H2 “equivalent number of alternatives.” By these two equations, we assume 
that design period or cost is proportional to the scale or complexity of design process. k or kc 
is the constant of proportionality between time or cost and equivalent number of alternatives, 
respectively. In the case where alternatives have different k, average of k is represented by k . 
Then, Ttotal can be expressed simply as shown in eq. 2.5. 
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Where, “total” is the suffix for total value of each variable. 
Next, H’ is defined from eq. 2.3 as follows. 
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By assuming H’ also follows eq. 2.2, k  is derived from eq. 2.5 and 2.6 as follows: 
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Where, n is the total number of alternatives on the target branch. k possesses the meaning as 
an index of the overall efficiency of an target branch. 

2.4 Results of quantitative analysis of actual design processes 
Actual design processes were analyzed by the methodology explained above. Firstly, the 
branching structure consisting of several design stages was investigated. Then, number of 
alternatives, their probability distributions, and minimum design time to process each stage 
were also examined. Such information was modeled and analyzed using spreadsheet as shown 
in Figure 2. With this model, the appropriateness of introducing certain design support 
methods/tools or priority of design stages to be improved can be determined rationally on 
quantitative grounds. In many cases, variation of probability distribution in upper design 
stages leads to more variation in design time or cost. 
Moreover, the imaginary minimum (= best) total design time can be derived by setting 100% 
probability to one convincing alternative on all branches. The maximum (= worst) total design 
time can also be derived by setting the perfectly even (namely, the least confident and the 
most ambiguous) probability distribution to the alternatives. These benchmark results are 

Figure 2. Example of actual design process (partial view) 



shown in Figure 3. As shown in this graph, the effect or impact of the design information 
against the design time is quantitatively estimated by the proposed methodology. 

3. Transition of characteristics and efficiency in design processes 
In this section, we proceed to the further analysis of the design processes, focusing on how 
design processes have been improved in the past several years. Through this observational 
study, we aim to clarify whether design support methods can actually reduce the design time 
and how they change the style of design activities. 

3.1 Target design projects 
We investigated three actual design projects concerning the cooling systems of professional-
use devices performed in 1998, 2002 and 2004. There were the trade-off constraints among 
the main function, size and heat generation. This means designers have to deal with the multi 
objective optimization problems. In the design department investigated in the present work, 
various appropriate design support methods including the Taguchi method were eagerly 
introduced aiming to improve the design efficiency in this target period. 

3.2 Effects of the Taguchi method on design time 
The design processes we examined have evolved through the following three steps: 
Step 1. In Project 1 in 1998, designers surveyed design parameters according to the order of 

their importance until design requirements were fulfilled. 
Step 2. In Project 2 in 2002, the Taguchi method was introduced for efficient parameter 

surveys covering many design variables simultaneously. 
Step 3. In Project 3 in 2004, a commercial optimization engine was utilized to investigate the 

relation between the key parameter and the main function. 
In this evolution of design processes, it is difficult to measure the extent to which the design 
processes are improved quantitatively. To approach this problem, we estimated the expected 
design time if the Taguchi method had been introduced in Step 1. 

3.2.1 Trial calculation 1 
In the first trial calculation, we estimated the design time if the Taguchi method had been 
introduced in Project 1. To fit the actual combination of parameter levels used in Project 1 as 
closely as possible, original orthogonal arrays L16( 152 ) and L18( 71 32 × ) are modified into 
L16( 42 24 × ) and L18( 33 32 × ) respectively, by combining rows or introducing dummy levels. 
Recently in this design department, selection has tended to favor L18 rather than L16 in 
similar cases, since L18 disperses interaction effects to other rows. Total design times are 
calculated by eq. 3.1 with parameters and conditions listed in Table 1 and Table 2. 
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Figure 3. Benchmarking of design time (Values are fictional.) 



Table 1. Conditions for trial calculation 

Legend Description Average time (hrs.) 
Ti Time needed to make 3D model first 3.00 
Tm Time needed to modify 3D model 0.60 
TF Time needed to construct FEM model from 

3D model  
3.42 

Ts Time needed to solve an FEM simulation case 2.05 

Table 2. Construction of design processes 

Legend Description Actual L16 L18 
Nm Number of times to modify 3D model 4 7 11 

NF Number of times to construct FEM 
model from 3D model  5 8 12 

Ns Number of times of FEM simulation 22 16 18 
Ttotal Total design time (hrs.) 67.6 67.3 87.5 

The points of results are listed below: 
• With L16, designers can obtain the information of factorial effects among variables in 

nearly the same time (67.3hrs.) as the actual design time (67.6hrs.). 
• However, with L18, design time is prolonged by about 20 hrs. In this case, there is a 

trade-off relation between design time and richness of obtained design information. 

3.2.2 Trial calculation 2 
Secondly, we estimated the design time if the Taguchi method had not been used in Project 2. 
As an imaginary comparative condition, we assumed designers would have used the single 
factor experiment, which is a common method if the Taguchi method is not used. 
In a single factor experiment, all control factors are independently optimized in sequence in 
order of importance, with all other parameters fixed. In fact, the parameter survey conducted 
at Project 1 followed almost the same procedure. Conditions are listed in Table 3, and 
Constructions of design processes are shown in Table 4. Total design times are calculated by 
eq. 3.2. Note that one verification analysis was added for the cases with the Taguchi method. 

Table 3. Conditions for trial calculation 

Legend Description Average time (hrs.) 
Ta Time needed to make analysis model 1.59 
Tc Time needed to define analysis condition 0.135 
Ts Time needed to solve an FEM simulation case 0.05 

Table 4. Construction of design processes 

Legend Description Actual
(L36*2) L36*1 

Single 
factor 
experiment

Na Number of times to make analysis model 37 37 14 
Nc Number of times to define analysis condition 74 37 20 
Ns Number of times of FEM simulation 74 37 33 

Ttotal Total design time (hrs.) 72.4 65.5 26.6 
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The results unexpectedly show that design time with the Taguchi method (72.4hrs) is much 
longer than that with the single factor experiment (26.6hrs). Even if repetition is not applied 
to the Taguchi method, the reduction in total design time is slight (65.5hrs)(see Table 4). 
This is because total design time mainly depends on the time needed to make analysis models, 
and with the Taguchi method, the number of analysis models necessary (N) increases 
exponentially and easily reach the maximum number (L) by following eq. 3.3: 
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Where, L is size of orthogonal array, l is number of levels, and nl is number of parameters 
which have l levels. For example, if a model has four parameters which have three levels on 
L36, N reaches the maximum number (L=36) easily as calculated below: 

     368134 ≥==lnl  
These results show the blind spot and provide instructive lessons in applying the Taguchi 
method or Design of Experiments (DOE). These methods are indubitably useful and powerful 
for exploring and optimizing many design parameters efficiently. However, as we showed, 
prior estimation is important. If estimation time is much longer than for the conventional 
single factor experiment, some measures might be recommended such as reduction the 
number or levels of design parameters, or division of large orthogonal arrays into smaller 
ones. 

3.3 Approach to quantitative evaluation of design efficiency 
As shown in the preceding section, sometimes there are trade-off relations between design 
time and richness of obtained design information. This causes difficulty for designers in 
judging whether a certain method or tool should be introduced. 
To address this problem, we consider the possibility of applying an index called “D-efficiency 
(Deff)”[5] to measure the efficiency of designing. 

3.3.1 Introduction of D-efficiency 
Originally, Deff was defined as the criterion that results in minimizing the generalized variance 
of the matrix of coordinates of experiment points, and is often used to optimize the 
experiment set for the response surface method (RSM). Deff is derived as follows. 
Firstly, the regression equation is defined as eq. 3.4. 
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Where, X  is matrix of the normalized coordinates of experiment points, k is the number of 
dimensions, and n is the number of experiment points. 
Then Deff is defined by eq. 3.5, as the criterion to minimize the regression error of eq. 3.4. 
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Where, p is number of unknown regression coefficients. 
As shown in the definition of Deff by eq. 3.5, it is based on the generalized variance of X and 



the geometric meaning of [ ]XXTDet is the p-dimensional volume of matrix XXT . Deff takes a 
value between 0 and 1, and the larger the value Deff takes, the better is the orthogonality of the 
coordinates set. Deff expresses the unbiasedness of the experiment points. 
Therefore, the experiment points with high Deff value are expected to have high probability 
and efficiency to reach the optimum design solution especially in high-dimensional search 
space. These characteristics of Deff are considered to be appropriate for application as the 
index of efficiency of searching. 
In this context, we compare Deff of design cases of Project 2 shown in section 3.2.2. 

3.4 Comparison of Deff among design processes 
As a calculation assumption, each set of experiment points is to be fitted to response surface 
from second-order Chebyshev polynomials. The results are shown in Table 5. 

Table 5. Construction of Deff in Project 2 

Description Deff 
With the Taguchi method (L36)(Actual) 0.53 
Single factor experiment (Imaginary) 0.073 

These results show that Deff of single factor experiment is much worse than that with the 
Taguchi method. This means that the searching efficiency of single factor experiment is much 
worse than that of the Taguchi method, and consequently, has high risk of not reaching a 
better solution. In this manner, designers can evaluate the efficiency of searching by Deff 
relatively or qualitatively. 
However, the relation of the absolute value of Deff to the quality of the induced solution is still 
a subject of research. In addition, if there is a complete correlation between a certain two 
parameters, Deff becomes zero. It is inconsistent with the actual validity of experiment points 
and a designer’s subjective sense. In such case, some measures, e.g. reduction of redundant 
parameters, should be applied. 
Taking these issues into consideration, we will continue with a more broadly based 
investigation with a view to elucidating the design efficiency. 

4. Innovation of design process and maturity of market 
In section 3, we showed that the improvement of the efficiency to reach the optimum design 
solution is more noticeable than the reduction of the design period in the recent transition of 
design processes we investigated. One reason for this was the difference in design 
circumstances between Project 1 and 2. In 1998, when Project 1 was proceeding, global 
competition in the market for the present device was less fierce than that in 2002, when 
Project 2 was proceeding. 
In regard to the background of this evolution of design processes, we assume that the 
paradigm in designing globally competitive products was shifting from “fulfilling the design 
requirements” to “searching for the optimum design solution.” In the following sections, we 
try to explain this qualitative innovation in design processes by a taxonomical approach. 

4.1 “Fulfilling the design requirements” type design 
We start by considering the relation between types of design style and maturity of product as 
listed below. 

• “Fulfilling the design requirements” type designs mainly exist in product fields where 
the requirements for specifications are not severe because there are few competitors, or 
the products are protected for some reasons, e.g. exclusive technologies, core 



competence, or non-technological regulations such as protective trade. 
• In this situation, the single factor experiment can be an advantageous strategy to fulfill 

the design requirement in shorter design period as analyzed in section 3.2.2. 
• Consequently, design solutions can take diverse forms reflecting designers’ discretion, 

taste, etc. These statuses are often found in the early, immature period of product history. 
• In the state of “fulfilling the design requirements” type design, “natural selection” in the 

market proceeds quite slowly, or the distribution of market share is stable or an 
oligopoly exists. 

4.2 “Searching for the optimum design solution” type design 
However, as a market matures, selection and standardization progress. In this latter phase, 
“searching for the optimum design solution” type design becomes more important for 
survival. 
The features and characteristics of this type of design are listed below. 
• For the products in this phase, the basic functions and prices have large weight. 
• Objective functions mostly converge on cost or basic functions (e.g., CPU, HDD, size 

and weight for mobile computers, fuel efficiency for automobiles).  
• Because of these characteristics, development of high value-added products with 

distinctive features becomes difficult. 
• Since requirements for basic functions do not have clear limits, competition among 

competitors intensifies. 
• Consequently, “searching for the optimum design solution” type design, i.e. the design 

with the Taguchi method or multi objective optimization methods, sometimes, with 
some search algorithms, etc., becomes indispensable. 

• As a result, design solutions become relatively similar unless any breakthrough 
technologies are introduced. 

4.3 Mechanism of design process innovation 
By classifying design processes into two types as shown in section 4.1 and 4.2, the difference 
of design processes in Project 1 and 2 becomes more explicable. In this section, we proceed to 
a consideration of the circumstances in which the transition of design processes is accelerated. 
Christensen[7] explains the cause of disruptive innovation in the market with Figure 4. 
At point 1 in Figure 4, product performance by conventional technology exceeds the 
requirements of the high-end market. Manufacturers relying on conventional technology 
ignore the rise of new technology because the market for it is still smaller than theirs at this 
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Figure 4. Mechanism of disruptive innovation (cited from Christensen[7], modified by the authors) 



point. 
However, when the level of new technology exceeds the requirements of the low-end market 
at point 2, the market for new technology grows explosively. 
Finally, once new technology exceeds even the requirements of the high-end market, 
disruptive innovation with drastic transition from conventional technology to new technology 
occurs at point 3. Christensen pointed out such disruptive innovation has been observed in 
many product domains such as hard disc drives (several times), automobiles, steel, home 
appliances, semiconductor devices, etc. 
In addition to Christensen’s view of the performance transition of technologies, we point out 
the role of customers’ perceptions of the cost-performance ratio as another cause of disruptive 
innovations. Figure 5 shows the typical transition patterns of technologies in contrast with 
cost-performance ratios. Three slanting solid lines show the customers’ requirements 
concerning the cost-performance ratio in phase 1 to 3, respectively. From phase 1 to 3, 
conventional technology progresses from 1c to 3c and new technology progresses from 1n to 
3n correspondingly. 
At phase 1, the cost-performance ratio realized by new technology is relatively lower than 
that by conventional technology, and the market for new technology is smaller than that for 
conventional technology. Thus, the products based on conventional technology maintain a 
high price. 
However, with the lapse of time, the cost-performance ratio of new technology catches up 
with that of conventional technology in phase 2 and finally surpasses it in phase 3. 
Once the cost-performance ratio is reversed in phase 3, the disruptive innovation breaks out. 
Since the cost-performance ratio usually improves in proportion to the expansion of the 
market, phase 1 to 3 in Figure 5 generally correspond to point 1 to 3 in Figure 4 respectively. 
Of course, this transition dose not necessarily fit all the cases. For example, if progress of the 
cost-performance ratio of new technology does not exceed that of conventional technology as 
shown by 3n’ in Figure 5, the superiority of conventional technology in the market could 
continue. 
Furthermore, customers’ perceptions of the cost-performance ratio are sometimes nonlinear as 
shown by the dotted line for phase 3. This nonlinearity could arise because customers 
sometimes place a “premium” on high-performance products. However, in many cases, it may 
delay the outbreak of disruptive innovation only for a certain period. 
Why are successful possessors of conventional technology so often defeated by newcomers 
despite being aware of the rise of new, promising technologies? Christensen enumerated 
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Figure 5. Innovation of technology and cost-performance ratio 



several reasons, e.g. being misled by their main customers’ requirements, difficulty of early 
entry by stable and successful companies into new, low-profit markets. Christensen argues 
that when a conventional company pursues growth based on new technologies, the 
establishment of a new vehicle to conduct the business, such as an independent unit or 
company, is often a shortcut to success. Although that may be a radical solution, it is always 
difficult for designers to execute a timely shift to new technology in competitive markets. 
This leads us to the discussion of the importance of decision making in the next section. 

5. Evaluation of ambiguity and uncertainty on decision making 
As explained in the previous section, transition from conventional technology to new 
technology sometimes erupts dramatically and disruptively. These characteristics and the 
nature of technology transition exacerbate the difficulty and risk in decision making by 
designers. They often have to make difficult decisions, such as whether to adopt new 
technology or conventional technology, considering complicated design constraints in a 
limited period. Consequently, such decisions inevitably involve anxiety, ambiguity or 
uncertainty. A bad decision made in the early stages of designing can have an immense 
influence on design time and cost. 
To address this problem, in this section we also apply our methodology for quantitative 
estimation of design load explained in section 2. Combined with decision making techniques, 
application of the present methodology is extended for management of risk caused by 
ambiguity involved in designers’ decisions. 

5.1 Scenario of alternative selection 
To discuss the ambiguity of decision making in the design process, we introduce a scenario 
designers typically face. Although it is an imaginary one, it is based on an actual design case 
we investigated in Section 3. In this scenario, we suppose that designers have three 
alternatives for the device design discussed in section 3 as shown below. 

• Alternative #1: Adoption of new technology 
• Alternative #2: Improvement of conventional technology 
• Alternative #3: Improvement of cost performance 

To cope with improvement of both the main feature and miniaturization of the body of the 
present device, introduction of recent innovative technology seems to be advantageous. 
However, as is usual in such a case, there is a certain risk in adopting new, inexperienced 
technology (e.g., difficulty of design, unexpected side effects). In this case, we assume the 
management of heat generation would be a difficult issue. 
Improvement of conventional technology would be the least disruptive strategy. However, 
drastic improvement of performance and miniaturization could not be expected. 
The third alternative is improvement of cost performance by pursuing reduction of cost for 
both parts and manufacturing processes without sacrificing performance of current model. It 
is assumed that this is easier to accomplish than the first or second alternative. 
In this situation, designers have to consider the advantages and disadvantages of each 
alternative from various perspectives. Some of the features of alternatives usually have trade-
off relations, and priorities or weights for the features may differ according to circumstances. 
In such complicated circumstances, appropriate use of decision making techniques could help 
designers settle and organize their thoughts regarding alternative selection in an orderly 
fashion and reduce the risk of backtracking in the design process. 
In the next section, we discuss the effects of decision making techniques in design scenes. 

5.2 Application and effect of decision making techniques 
Firstly, referring to Wynne’s classification of uncertainty [8], we tentatively redefine three 



terms regarding decision making as shown in Table 6. 

Table 6. Tentative definition of terms regarding decision making 

Term Definition 
Ambiguity Extent of unclearness of primary factors affects decision. 
Uncertainty Extent of unclearness of probability of each primary factor. 
Preference Intensity of preference for certain alternative. 

In following sections, we use these terms distinctively according to Table 6. 
In this section, we take up the Analytic Hierarchy Process (AHP)[9] as an example of 
decision making techniques used in design processes. Since the main subject of this section is 
to discuss generally the nature of decision making by human designers, we do not limit the 
objective decision making techniques to AHP. 
AHP was developed by Thomas Saaty in 1971. It is widely known and recently has been used 
in various fields. AHP consists of the following three steps. 
• STEP 1: Problem is analyzed into hierarchical structure (Figure 6). 
• STEP 2: Elements or alternatives are compared in a pairwise manner with the scale 

shown in Table 7. 
• STEP 3: Weights between top goal and elements, or elements and alternatives are 

derived from the results of pairwise comparisons by matrix operations. The results are 
summed up to get the overall priority of each alternative. 

Table 7. Scale for pairwise comparisons 

Numerical values Definition 
1 Equal importance 
3 Weak importance 
5 Strong importance 
7 Very strong importance
9 Absolute importance 

     2, 4, 6, 8: intermediate values reflecting compromise 

Step 1 helps designers to reduce their “Ambiguity” by explicitly constructing the elements and 
their structure relevant to decisions. 
We applied these steps to the imaginary scenario described in section 5.1. We assumed that 
designers ask the simulation department to evaluate the increases in temperature for three 
alternatives. Then, instead of the actual practice of the designers, we followed the AHP 
procedure before and after getting the results of simulations. In this imaginary scenario, we 
assumed that from the simulation results, designers obtain valuable information to guarantee 

Alternative 
Selection

Cost Performance Ease of design ProductivitySize Ext. design Status

Alternative #1 Alternative #2 Alternative #3

Figure 6. Example of hierarchical decision structure 



the design of alternative #1 and become more confident regarding management of the heat 
increase within the allowable range even with new technology. Consequently, the pairwise 
scores of “size” and “ease of design” for alternative #1 are improved relatively against 
alternative #2 and #3. The trial results of AHP are shown in Figure 7. These figures make the 
degree of designers’ preference for alternatives clearer. To express the mental state on 
decision making, we introduce the probability density function f(x) as defined in eq. 5.1: 

    [ ]bXadxxf
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In eq. 5.1, random variable X represents the probability (or confidence) to select a certain 
alternative and f(x) is assumed to follows beta distribution as defined in eq. 5.2: 
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Where, 21, λλ are free parameters and ( )21,B λλ is beta function. x value to maximize f(x) is put 
as xp and obtained by equating the differentiation of eq. 5.2 as zero: 
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Then, we suppose the three cases shown in Table 8. 

Table 8. Three cases of probability densities 

Case AHP Simulation Status xp a b [ ]bXa ≤≤Pr  1λ  2λ  Hc

Case 1 No No Initial condition 0.7 0.6 0.8 0.7 15.6 7.2 -1.36
Case 2 Yes No Only peak is moved. 0.8 0.7 0.9 0.7 13.8 4.2 -1.37

Case 3 Yes Yes Peak moved and 
peakedness improved. 0.8 0.75 0.85 0.8 84.0 21.8 -2.64

Case 1 is the initial condition. In case 2, only peak (xp) is improved from 0.7 to 0.8, and 
peakedness is not improved (70% within error range of ± 0.1). xp represents the degree of 
preference, and peakedness of the distribution (represented by the range between a and b, and 
[ ]bXa ≤≤Pr ) is related to the uncertainty for the peak value. For example, if the results of 

precise simulation or experiment indicate that two alternatives have nearly equal 
performances, preference stays close to even (xp=0.5) but uncertainty is reduced (f(x) shapes 
peaked). 
As an index of the peakedness of f(x), we propose the use of the entropy for continuous 
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random variables ( ∫−=
1

0 2 )(log)( dxxfxfH c ). Hc takes negative value, or zero in the worst 

case (f(x) =const =1). Larger absolute value of Hc represents less uncertainty (see Table 8). 
The three cases in Table 8 correspond to the scenario shown in section 5.1. Assume 
alternative #3 had been rejected for some reason and there are two alternatives (#1 and #2) 
left. Then consider X of eq. 5.1 to be p1 (probability to select alternative #1) in this case. 
From these peaks and deviations shown in Table 8 and eq. 5.2 and 5.3, the probability density 
functions are determined as shown in Figure 8(a) and represent the following statuses. 
1. Before the practice of AHP and simulation, designers do not have enough information to 

judge, i.e. they are beset by ambiguity (Case 1 in Table 8 and Figure 8(a)). 
2. Next, after the practice of AHP, elements for judgment become clearer and consequently, 

the preference for alternative #1 is also increased (Case 2 in Table 8 and Figure 8(a)). 
3. Finally, simulation results support the advantages of alternative #1 and consequently, 

uncertainty of designers is reduced (Case 3 in Table 8 and Figure 8(a)). 
Of course, this scenario is just to explain the meaning of ambiguity, uncertainty and 
preference distinctively and exaggeratedly. Namely, any information from decision making 
methods, simulations or experiments could affect all of them. 
Next, the probability distributions can be converted into the distributions of estimated design 
time with the methodology applying Shannon’s entropy explained in section 2. Assuming that 
minimum design time for one alternative is 10 (hrs.), estimated distributions of total design 
time (Ttotal) are calculated by eq. 2.2 as shown in Figure 8(b) and risks to exceed the estimated 
maximum design time are listed in Table 9. In Figure 8(b), t is variable for Ttotal and P(t) 
means [ ]tTtotal ≤≤10Pr . In Table 9, tmin, and tmax are minimum and maximum values of Ttotal at 
X = b and a respectively. 

pxt is value of Ttotal at X = xp. [ ]maxPr tTtotal >  means the probability 
(namely, risk) of exceeding the estimated maximum design time. 

Table 9. Estimated distributions of design time (hrs.) and risks of exceeding the estimated maximum design time 

Case tmin pxt  tmax [ ]maxPr tTtotal >  (%) 
Case 1 16.5 18.4 19.6 19.2 
Case 2 13.8 16.5 18.4 23.5 
Case 3 15.3 16.5 17.5 13.1 

These results explain that biasing preference shortens the design time (Case 1 to Case 2), and 
reducing uncertainty narrows the range of estimated design time and consequently, reduce the 
risk of exceeding the estimated maximum design time (Case 2 to Case 3). 
In this manner, effects of designers’ mental states on design time and risk can be evaluated 
analytically and quantitatively. 
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6. Conclusions 
In this paper, we analyzed the improvement found in the actual design processes. It was found 
that introduction of the Taguchi method is not necessarily advantageous for the reduction of 
design time from the short-term perspective. However, by calculating the D-efficiency, it is 
shown that the Taguchi method makes it possible to improve the coverage and efficiency of 
searching in the design variable space. We taxonomically explained this improvement of 
design processes as transition from “fulfilling the design requirements” type design to 
“searching for the optimum design solution” type design. 
For the latter type design, accurate alternative selection in the early design stages is essential. 
Accordingly, rational decision making methods, e.g. AHP become important. In this context, 
we also proposed a statistical estimation methodology to analyze how the preference and 
uncertainty regarding designers’ decision making affect the design time and risks. 
The results led to an understanding that so far as risk management in the design process is 
concerned, it is important not only to bias preference but also to reduce uncertainty. 
We name the quantitative approach shown in this paper “Design Process Assessment,” and 
aim to develop it into a systematic methodology for optimizing the design processes based on 
objective and quantitative rationales. 
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