

FOURTH INTERNATIONAL SEMINAR AND WORKSHOP

In association with the

Engineering Design in Integrated Product Development

COMPLEXITY MANAGEMENT IN THE DESIGN OF DISTRIBUTED
MANUFACTURING EXECUTION SYSTEMS

M. JENKO
Department of Control and Manufacturing Systems

University of Ljubljana
Slovenia

marjan.jenko@fs.uni-lj.si

Keywords: component-built, evolutionary, distributed manufacturing modeling, emergent response,
low-bandwidth communication, manufacturing execution system, mutation, queuing model, reusable
components, software reuse, statistical simulation, work system

Abstract: A Manufacturing Execution System (MES), an Enterprise Resource Planning (ERP)
system and a Supervisory Control and Data Acquisition (SCADA) system make up the information
and decision-making infrastructure of a modern company.

Collaboration between SCADA and ERP system historically depended on the individuals who
served as a link between production and management. MES enhances the collaboration between
managing and manufacturing functions. MES adds new functionality to production management,
and adds refinement to ERP and SCADA interfaces.

MESs are traditionally built in client-server configurations. This paper presents a new concept in
a MES design and presents an extension of MES functionality. The proposed concept addresses,
first, the distributed nature of modern manufacturing and second, the need for mutations in
manufacturing. The extension in functionality is the inclusion of micro-planning, supported by
statistical simulation, into the MES framework.

1. INTRODUCTION
The concept of using computer systems to assist in
the production operation has been around since the
early 1980’s. Initially it was named Computer-
Integrated Manufacturing (CIM), but as the scope of
these systems increased and some standard products
become available, the Manufacturing Execution
System (MES) definition evolved. It is about a
system that helps everyone in production to execute
the plan. MESs range in scope but at minimum they
all make production information available in real-
time to all those who need it.

A modern MES implementation is technically a link
between the real time, event driven shop floor
control systems and the transaction order driven
higher level system, i.e., the ERP system, Figure 1.
MES guides, initiates, responds to, and reports on
production floor activities as they occur. The
resulting rapid response to changing conditions,
coupled with a focus on production efficiency and

quality, drives value-added production floor
operations and processes. MES provides a level of
detail and real-time control that is impossible to
achieve with an ERP system only. Built-in real-time
micro-scheduling minimizes non value-added
activities. It is geared to keeping optimal work-loads
on machines at all times and thus helps to achieve
high production throughputs.

An instantaneous implementation of a purchased
MES is not possible. A plant-wide MES can not be
purchased as a finished product. It must be built to
the requirements of each facility. Such a system is
traditionally expanding its functionality over a
period of years, incorporating existing equipment,
and being modified to integrate new equipment as
and when the equipment becomes installed.

Properly designed and maintained, MES provides a
distributed database, sensors for tracking production
processes, structures for decision-support and
communication, that all collaborate in providing data
in a secure and timely fashion to all major functional

EDIProD’2004 184

Figure 1 MES is a link between the ERP and shop floor control systems

areas, i.e., to process control, production
management, commercial and technical applications.

There are several MESs available on the market,
especially for the high volume production where
only a state-of-the art organization of production
gives a competitive edge.

MES solutions for a geographically distributed
production environment are at a less mature stage.
Relevance of standardized interfaces and protocols
for building a distributed MES is recognized as
important. Beyond that it is up to the designers of a
particular system to build working solutions. This
paper presents an ICT framework, that, when
adhered to, yields an evolutive distributed MES. The
proposed framework for a MES design is an answer
to challenges of modern adaptive distributed
manufacturing, which is, by nature, loosely coupled
and flexible. Each player in the adaptive
manufacturing value chains needs to be prepared to
deal with a changing mix of trading partners,
depending on which virtual product coalition they
are participating in. Proposed MES framework
addresses the issue of change management in a MES
for a distributed manufacturing via sets of functional
components that are stored in a components
repository and autonomously distributed to different
geographic places as needed.

Production planning is usually understood as a work
of a deterministic nature. This work is traditionally
performed by tools, built into ERP systems, that use
data from a database to sum-up various production,
storage, transport times and costs. These are than
displayed in Gantt charts for different sequences of
manufacturing activities. Experts are needed to
schedule activities of different production orders that
are executed simultaneously on shared
manufacturing resources. The proposed framework
first, introduces micro-planning on a production
floor and second, addresses the non-deterministic
nature of production processes with help of
statistical simulations of production activities.

2. BACKGROUND

2.1. Modern distributed manufacturing
systems

Several paradigms for the analysis and synthesis of
modern manufacturing, i.e., of modern means of
production, relocations, and storage have emerged in
the last decades. The best known are holonic [1],
fractal factory [2], bionic [3], and Complex Adaptive
Manufacturing Systems (CAMS) [4]. All of these
paradigms achieve their objectives by the adaptation

EDIProD’2004 185

of the manufacturing systems to ever-changing
requirements. It is in the parting scheme and in the
decision-making processes that they differ mostly
from each other. Progress in refining decision-
making processes is being reported steadily.

2.2. Distributed Monitoring and
Control Systems

The art of distributed software design is in the
structuring of the application into self-sufficient
entities with well-defined interfaces. Each entity
itself is a small application. A good partitioning
strategy enables writing software of great
complexity. Actually, C++, which is the mother of
all object-oriented languages, was introduced for
solving one of the most difficult distributed
problems in the fifties -- the optimization of a
telephone switching network. AT&T founded this
work, which produced the C++ compiler as a by-
product [5]. Such a network has a close resemblance
to a distributed manufacturing environment. Both
systems consist of self-sufficient entities (switches
in networks and different processes in
manufacturing).

Efforts founded by the Advanced Research Project
Association (ARPA) resulted in the creation of the
Internet. This opened the potential for, first,
effective information dissemination, and, second, for
a huge upgrade from object-built applications to
distributed object-built applications. New distributed
programming technologies emerged in the last
decade. The relevant ones for application
programming are: Component Object Request
Broker Architecture (CORBA) [6, 7, 8, 9, 10];
Distributed Component Object Model (DCOM) with
its derivative COM+, and .NET. Distributed
programming technologies use communication
technologies, built into Operating Systems (OS), and
internet infrastructure (routers, firewalls,
interconnecting hardware).

2.3. Statistical simulations in
manufacturing

Statistical, as opposed to deterministic simulation,
takes into account scheduled activities and random
events, calling for statistical modeling, such as late
deliveries of material, customers' modifications of
orders, machine breakdowns, sickness, etc. Can such
modeling significantly help to improve
manufacturing practices?

Let us put manufacturing activities into a perspective
on a large scale of Newtonian mechanics. Biology or
sociology might also be instructive, but are not
within the author's competence.

At one end of the scale is the fundamental level of
the theory. Here, one studies, for example, the
motions of a few mass points interacting with each

other within well defined initial and boundary
conditions. The problems may be technically
difficult, but they are well defined and solvable, at
least numerically.

At the other extreme is the statistical level. Here, the
number of particles is so large (approaching
Avogadro's number) that the motions of individual
particles can no longer be followed - nor would there
be a justification or possibility to do it. Only some
statistical concepts adjusted to respect conservation
of energy remain. These concepts are temperature,
entropy, pressure, etc.. The net effect is that classical
mechanics, by forgetting individual components and
concentration on their statistical behavior, gives rise
to thermodynamics - a totally new paradigm.

The first, fundamental level is concerned with
individual elementary systems free of random
behavior; and the second, statistical level ignores
completely the individuality of the parts to
concentrate on their collective effects.
Manufacturing belongs to an intermediate level,
where both individuality and statistics are important.
At this level, the number of items in production and
machines is large enough to justify statistics, but not
large enough to render the individual pieces
irrelevant. Hence, their individual properties as well
as their interactions modified by random events must
be considered simultaneously. Just about the only
practical approach available for the analysis of such
complexity is computer simulation.

A structure of simulator’s internal design matches a
structure of a manufacturing process. Discrete event
type simulation technique and dynamic build-up of
objects, which correspond to machines and items in
production, are the software design approaches that
result in mapping of manufacturing activities into
simulation. Statistical behavior is introduced on a
level of an object, i.e., for machines, operators and
items in production. All these are described by
parameters with different statistical distributions [11].

Some commercial tools exist for simulation of
manufacturing activities. Arena is the most popular
one. However, it is aimed at simulation at large scale
such as supply chains, logistics applications and
improvement of business processes.

2.4. Reusable Software Components
Object oriented compilers are a result of tedious work.
These compilers give means to materialize the
encapsulation concept that is fundamental in the
design of a reusable component software. Object
Management Architecture (OMA) [12], and open
system architecture for CIM (CIMOSA) have been
suggested in the last decade to facilitate the static
integration of reusable components. Reuse-centered
developments have been performed in the design of
production control systems [13, 14, 15, 16, 17] and in
business systems [18]. Research in ontology for

EDIProD’2004 186

designing embedded system applications from
reusable components are reported by Jenko et al. [19].

Reusable software components are used in a form of
source code components and in a form of compiled
components. Source code components give the
freedom to trim functionality easily and to switch
easily among target platforms. Compiled
components are used in a process of software
linking. Both source code components and compiled
components are supposed to be built into an
application before its first usage.

Components prepared for dynamic linking (inclusion
on demand when the application is running) are not
yet very common. Operating systems take advantage
of such locally available components to use fewer
hardware resources at a time. Programming
specialists, with such components, can maintain and
upgrade real-time systems that need to operate in a
non-disruptive manner.

A dynamic inclusion of remote (as opposed to local)
software components is presented in this paper as
means to build a practical MES that supports
distributed manufacturing in the open environment.
In our particular case, it is distributed manufacturing
of different electronics modules that is monitored
and controlled with help of the intranet and internet
environment.

3. EVOLUTIVE COMPONENT-
BUILT MES DESIGN

The presented MES monitors and controls entities of
a distributed manufacturing process.

Object oriented compilers, internet infrastructure
and software technologies for collaboration of
remote objects gave us the infrastructure to build
such a MES.

Statistical simulation on a level of micro-planning
on a production floor is built-in into the presented
MES to improve understanding of different
production scenarios, bottlenecks and to result in
simulation-supported decisions.

Proposed formalization of a MES design in a form
of reusable software components gives us means to
built a MES that reacts to changes in a production
environment, i.e., it has evolutive properties. This
design is also scalable, since increased system
complexity results only in bigger system and in
increased information traffic, and not in increased
complexity, i.e., in increased functionality of an
elementary building block, which is a software
component.

Complex Adaptive Manufacturing System (CAMS)
paradigm [4, 20] gave us a concept for structuring a
manufacturing process into self-sufficient entities.
The CAMS paradigm divides a manufacturing

Figure 2 Elementary work system in CAMS paradigm coupled to a component-built virtual work system

EDIProD’2004 187

process into elementary processes that can be
analytically described. To implement an elementary
process, CAMS paradigm introduces an Elementary
Work System (EWS). EWS consists of a work
process, of hardware elements that are sufficient to
implement a work process, of a work process
identification that enables process control and its
optimization, and of a human operator, Figure 2 [4].
EWSs do have the capabilities and the competence
to perform particular manufacturing operations.
They are conceptualized as autonomous units and
the indivisible building blocks of a manufacturing
system. EWSs' representatives in the information
world are Virtual Work Systems (VWSs). These
were introduced as the progress in ICT was
beginning to promise the possibility of effectively
building such structures and inter-VWS information

exchanges.

VWSs, EWSs representatives in the information
world, are operating in computers that are wirelessly
connected to the intra-net (embedded Linux and
WindowsCE3.0 on rugged Tablet PCs and on
embedded PCs).

3.1. MES evolution via emergent
response of a VWS

VWSs are built from functionality components. The
novelties in the proposed component-built
distributed system for production monitoring and
control are:

- a reference node, i.e., functionality components
repository is introduced, Figure 3. Here, reference
components are stored and maintained. The
reference node is on a component-dedicated
platform..

Figure 3 Information exchange for monitoring,
control and delivery of software
components on demand

- functionality components are automatically
downloaded from a reference node, installed into the
VWS, and immediately used to boost or modify
VWS functionality when needed.

Inter- VWS information exchange, and intra- VWS
functionality, enables a distributed monitoring and
control. And exchange of component requests for
component assemblies enables VWS emergent
response. Whenever an component-built VWS
receives data that it is not equipped to process, it
searches for a required functionality in the reference
node, Figure 3. The component assembly, that
encapsulates required functionality, is downloaded
and installed into the VWS in the most unobtrusive
manner. The VWS immediately uses the new
functionality to produce a response to the request
that triggered the whole activity. On a system level,
such a component assembly exchange gives means
for system evolution and mutations.

Figure 4 Building-up a functional component assembly

EDIProD’2004 188

Figure 4 presents a flowchart of activities that are
involved in the creation of a component assembly in
a reference node. First, a VWS sends a request for a
new functionality to the reference node. It is a
responsibility of software developers to
simultaneously release component assemblies that
send requests, and those that send replies to new
requests. Therefore, the condition that a requested
component would not be available should not be
allowed to occur.

In the reference node, first a component assembly
list is generated from information on components

and on intra-component dependency. This
information is stored in a database on components.
Then, components from the assembly list are
sequentially extracted from a database. They are
packed together with the assembly list into an XML
document. The data is sent to the VWS that
requested new functionality, Figure 5. In this case, it
is a Functionality Component Assembly J, that is
needed in a VWS I to process the incoming
message. The VWS unpacks the document from the
reference node. Then, the VWS uses information
from a dependency list to autonomously install inter-
dependent components in a proper sequence. New

Figure 5 Activities involved in an VWS emergent response

Figure 6 Activities involved in the communication after the particular component assembly download

EDIProD’2004 189

functionality is installed and immediately available
to process the message that triggered the whole
activity of component assembly build-up,
downloading and installation. Figure 6 shows
subsequent information exchange with the
involvement of Functionality Component Assembly
J in the VWS I.

4. EVOLUTIVE COMPONENT-
BUILT DISCRETE EVENT TYPE
SIMULATOR FOR MICRO-
PLANNING

In Taylor's paradigm, the “project” remains the same
over a long period of time. For example, a fixed
project might be “populate and solder a set of
printed circuit boards (PCBs) and finally assemble
the boards into an electronics module of a product
A”. The components are then continually being
replenished from the outside, component placing and
soldering stations continually produce populated
PCBs, the kitting station continually replenishes the
queue of PCBs, and the assembly EWS continually
processes the PCBs into an electronic module
according to the same processing instructions, or
programs.

In adaptive manufacturing, however, the job orders
and Work Flow Specifications (WFSs) change over
short periods of time. For example, the projects
might be “produce electronics module for 10000
units of a product A”, followed by “produce
electronics module for 2000 units of a product B”,
etc., with likely return later to the production of a
module for a product A. Clearly, the input queues,

kitting procedures and queues of PCBs are project-
specific. Not only because the components and EWS
programs are different, but the customers might be
different too.

Figure 7 Subsystem for the assembly of electronics
modules

In such scenarios of adaptive manufacturing a
statistical discrete event type simulation supports

Figure 8 Two WFS sharing the same resources

EDIProD’2004 190

Figure 9 Times and costs for an EWS N

decisions in micro-planning. Let us define a
production floor as a set of EWSs and links among
them. EWSs correspond to different production
phases, and links correspond to transport paths that
material pieces need to cross between production
phases. For example, the subsystem for the assembly
of electronics modules is in Figure 7. The model for
the production floor, consisting of EWSs and links
where different job orders and WFSs take place
simultaneously on a large scale is in Figure 8. Here,
the material flow defined by the application A is
represented by solid lines, the material flow defined
by the application B by dashed lines. In this
example, EWS 3 is not used by either application -
but might be by other applications at other times.
EWSs 1, 2, 3, 4, and 5 perform placing of
electronics components onto a PCB and soldering
them, EWS. 5 is a kitting station and EWS 6
performs the assembly of electronic modules from
different PCBs.

Job orders are the actual inputs to the manufacturing
system and WFSs define the production process.

The essential simulation outputs are distributions of
production times and of production costs, such as in
Figure 9. Statistical data, concerning the utilization
of EWSs, help to discover production bottlenecks
and resource underutilization.

5. IMPLEMENTATION
It took one engineer-year (EY) of research to
evaluate combinations of available technologies. It
took another two EYs of effort to develop and code
a real world design for a distributed MES consisting
of an component-built ERP interface and VWSs, and
of a component-built built-in statistical simulator for
a micro-planning support.

Such a scalable project for the implementation of a
distributed application needs to effectively address
security, ease of maintenance, system extensibility,
system mutations, and net bandwidth preservation.
These issues become most critical to the success of a
project when a distributed application spans the
intra- and internet which is the case with distributed
manufacturing.

Regarding security, existing security policies must
remain intact, i.e., firewall and router settings must
not be changed in order to make a new distributed
application work. No additional ports are to be
opened. A combination of a SOAP service, XML
language, and HTTPS gives means to preserve
security, since this combination allows passing
information through firewalls and routers that are set
to allow only web browsing, that is, are set for
common internet usage. HTTPS itself has built in
mechanisms for authorization, authentication, and
data encoding.

Component-built VWSs, structuring functionality
components into sub-components, managing
component inter-dependency with the help of
dependency lists, usage of .NET technology for
intra-agent components activation, and focusing
system maintenance and system development on a
reference node only, makes the implementation of
the presented MES feasible. Particularly, since:

- VWSs maintain and evolve by themselves. Only
the reference node needs human maintenance.

- VWS implementation complexity is reduced.
Structuring VWSs into sets of logically simple inter-
dependent components makes coding a profession,
not an art.

EDIProD’2004 191

Figure 10 Coupling of modern RAD tools, libraries, compilers, and platforms

- New EWS inclusion is solved on a system level.
An EWS, added to the production floor, is
immediately equipped with a VWS, that is created
from a template. The VWS then develops
functionality through its life time.

- Net bandwidth is not wasted. New (or different)
functionality is transported by internet only when
needed, and only to the destination where it is
needed.

- User’s perception of MES responsiveness is
practically the same in the case of VWS-emergent
response, Figure 5, and in the case of normal
communication to/from the VWS, Figure 6. The
whole chorus of downloading a functionality
component assembly, its registration, and activation
takes less than a second on a distant Pocket PC
connected to a reference node via a combination of
intra-, and internet infrastructure. The limiting factor

to response time is actual internet bandwidth. The
bandwidth is sufficient when intra- nets are
connected to a public infrastructure via cost-
effective ADSLs.

- Intra- net security is not compromised. All
information flow is performed via HTTPS protocol
which includes its own security mechanisms.
Firewall settings remain intact.

Figure 10 shows coupling of modern RAD tools,
libraries, compilers and platforms that all can be
used to build distributed evolutive component-built
MESs.

6. CONCLUSION
Structuring monitoring and control processes for
manufacturing into EWS-local entities, i.e., VWSs
that communicate with the ERP interface, yields
effective MES under static conditions. Structuring

EDIProD’2004 192

VWSs into functionality component assemblies, that
are instantly downloaded and installed on demand
from a reference node, effectively addresses
maintenance, and the evolution of a MES system.
Structuring functionality components into sub-
components, where components keep track of
versioning and dependency lists, keep the VWS
structure consistent. Statistical simulation on the
production floor improves micro-planning. Proposed
MES architecture addresses these implementation
issues: ease of implementation, ease of maintenance,
system security, capability of evolution, and
preservation of net bandwidth. Modern technologies
(SOAP/.NET, XML, and HTTPS) are being used to
produce a MES that has the potential, by design, to
grow, and the potential to evolve technically through
the choice of the currently most powerful IC
technologies.

REFERENCES
[1] Valckenaers, P., VanBrussel, H., Bongaerts,

L., Wyns, J. “Holonic manufacturing
systems”, Integrated Computer Aided
Engineering, vol. 4., no. 3, p. 191-201, 1997

[2] Warnecke, H.J., Die fraktale Fabrik,
Revolution der Unternehmenskultur, Springer
Verlag, 1993

[3] Ueda, K., “A concept for bionic
manufacturing systems based on DNA-type
information”, Proceedings of 8th International
Prolomat Conference, Tokyo, p. 853-864,
1992

[4] Peklenik, J. “Complexity in manufacturing
systems”, Manufacturing Systems, 24, p. 17-
25, 1995

[5] Stroustrup B., The design and evolution of
C++, Addison Wesley, 1995

[6] Huang C. Y., S. Y. Nof, Evaluation of agent-
based manufacturing systems based on a
parallel simulator, Computers & Industrial
Engineering, vol. 43, p. 529 – 552, 2002

[7] Kim T. W., C. S. Ko, B. N. Kim, An agent-
based framework for global purchasing and
manufacturing in a shoe industry, vol 42, p.
495 – 506, 2002

[8] Kotak D., S. Wu, M. Fleetwood, H. Tamoto,
Agent-based holonic design and operations
environment for distributed manufacturing,
Computers in Industry, vol 52, p. 95 – 108,
2003

[9] Shen J., S. Park, C. Ju, H. Cho, CORBA-
based integration framework for distributed
shop floor control, Computers & Industrial
Engineering, vol 45, p. 457 – 474, 2003

[10] Yen B. P. C., Communication infrastructure in
distributed scheduling. Computers &
Industrial Engineering, vol. 42, p. 149 – 161,
2002

[11] Jenko M, Queuing simulation of distributed
manufacturing systems, Proceedings of the
International Conference on Flexible
Automation and Intelligent Manufacturing
(FAIM’01), Dublin, July 16-18, 2001

[12] Hutt A.T.F. (Ed.), OMG, Object Oriented
Analysis and Design-Description of Methods,
Wiley, New York, 1994

[13] Grabot B., P. Huguet, Reference models and
object-oriented method for reuse in
manufacturing control system design,
Computers in Industry, vol. 32, p. 17 – 31,
1996

[14] Ryu K., Y. Son, M. Jung, Modeling and
specifications of dynamic agents in fractal
manufacturing systems, Computers in
Industry, vol 52, p. 161 – 182, 2003

[15] Smith, J. S., S.B. Joshi, Reusable software
concepts applied to the development of FMS
control software, International Journal of
Computer Integrated Manufacturing, vol. 5, p.
182 – 196, 1992

[16] Son Y. J., A. T. Jones, R. A. Wysk,
Component based simulation modeling from
neutral component libraries, Computers &
Industrial Engineering, vol. 45, p. 141 – 165,
2003

[17] Verwijmeren M., Software component
architecture in supply chain management,
Computers in Industry, vol. 53, p. 165 – 178,
2004

[18] Worley J. H.,, G.R. Castillo, L. Geneste, B.
Grabot, Adding decision support to workflow
systems by reusable standard software
components, Computers in Industry, vol. 49,
p. 123 – 140, 2002

[19] Jenko M., N. Medjeral, P. Butala,
Component-based software as a framework
for concurrent design of programs and
platforms – an industrial kitchen appliance
embedded system, Microprocessors and
Microsystems, vol. 25, p. 287 – 296, 2001

[20] Peklenik, J. (1992). “FMS - A complex object
of control”, Proceedings of 8th International
Prolomat Conference, Tokyo, 1992, p. 1-25

