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1. Introduction 
In conventional fatigue models of the gear tooth root it is usual to approximate actual gear load with 
pulsating force acting in the highest point of the single tooth contact. However, in actual gear 
operation, the magnitude as well as the position of the force, changes as the gear rotates through the 
mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was 
performed. Finite element method and linear elastic fracture mechanics theories are used for the 
simulation of the fatigue crack growth.  
Moving load produces a non-proportional load history in a gear's tooth root. Consequently, the 
maximum tangential stress theory will predict a unique kink angle for each load increment, but herein 
crack’s trajectory is computed at the end of the load cycle. An approach that accounts for fatigue crack 
closure effects is developed to propagate crack under non-proportional load.  

2. Fatigue crack propagation 
The application of the linear elastic fracture mechanics (LEFM) to fatigue is based upon the 
assumption that the fatigue crack growth rate, da/dN, is a function of the stress intensity range ΔK = 
Kmax-Kmin, where a is a crack length and N is a number of load cycles. In this study the simple Paris 
equation is used to describe the crack growth rate: 
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d

= Δ ma C K a
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  (1) 

This equation indicates that the required number of loading cycles Np for a crack to propagate from the 
initial length a0 to the critical crack length ac can be explicitly determined, if C, m and ΔK(a) are 
known. C and m are the material parameters and can be obtained experimentally, usually by means of 
a three point bending test. For simple cases the dependence between the stress intensity factor and the 
crack length K = f(a) can be determined using the methodology given by [Ewalds and Wanhill, 1989]. 
For more complicated geometry and loading cases it is necessary to use alternative methods. In this 
work the FEM in the framework of the program package [FRANC2D, 2000], has been used for 
simulation of the fatigue crack growth.  
Two gear models are being explored: first in which gear tooth was loaded with normal pulsating force 
acting at the highest point of the single tooth contact (HPSTC), and second one in which the fact that 
in actual gear operation the magnitude as well as the position of the force, changes as the gear rotates 
through the mesh is taken into account. 
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2.1 Model where load is approximated with force acting at the HPSTC 
In most of recent investigations [Glodež et al., 2002] a loading cycle of gear meshing is presumed as 
pulsating acting at the HPSTC (Figure 1.) 

 
Figure 1. The pattern of loading cycle for the fatigue analysis 

The initial crack is placed perpendicularly to the surface at the point where maximum principal stress 
occurs in a gear tooth root for load acting in the HPSTC. The threshold crack length a0 below which 
LEFM is not valid, i.e. transition point between initiation and propagation period, may be estimated 
approximately as [Ostash et al., 1999.]: 
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where ΔKth,eff is effective threshold stress intensity factor, and σD is fatigue limit. 
The determination of the stress intensity factor (SIF) mode I and mode II is based on a J integral 
technique. The computational procedure is based on incremental crack extensions, where the size of 
the crack increment is prescribed in advance. In order to predict the crack extension angle the 
maximum tensile stress criterion (MTS) is used. In this criterion it is proposed that crack propagates 
from the crack tip in a radial direction in the plane perpendicular to the direction of greatest tension 
(maximum tangential tensile stress). The predicted crack propagation angle can be calculated by: 
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The equivalent SIF is then: 
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A new local remeshing around the new crack tip is then required. The procedure is repeated until the 
equivalent SIF reaches the critical value KIc, when the complete tooth fracture is expected. Following 
the above procedure, one can numerically determine the functional relationship K = f(a). 
In this paper, the stress intensity range in Paris equation is replaced by the effective stress intensity 
range:  
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where Kcl is SIF when closure occurs, and Keq,max and Keq,min are maximal and minimal SIFs during 
load cycle. For this gear load model Keq,max is equal Keq (4), and Keq,min = 0. 
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Effective range of SIF is calculated using model [Budiansky and Hutchinson, 1978] for plasticity 
induced crack closure, and influence of oxide induced crack closure, and roughness induced crack 
closure is taken into account by the concept of the partial crack closure, [Kujawski, 2002]: 
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where g is a transition function: 
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wher Kth,max is the maximum SIF at threshold, and ξ  is normalized crack-wake plasticity, and it is 
estimated according to [Newman et al., 2003], by fitting results from Budiansky and Hutchinson with 
4th order polynomial: 

2 3 40,8561 0,0205 0,1438 0,2802 0,3007ξ = + + + −R R R R  (8) 

where R is load ratio, Keq,min/Keq,max. 

2.2 Moving force model 
For moving force model, a quasi static numerical simulation method is presented in which the gear 
tooth engagement is broken down into multiple load steps and analyzed separately, [Lewicki et al., 
2000], [Spievak et al., 2001]. 
During the contact of the teeth pair the load move along the each tooth flank and so changes its 
direction and intensity. In order to investigate the influence of moving load on the gear root stress 
amplitude, the analysis is divided, for example, in sixteen separated load cases (j = 0 to 15): Four of 
them take the force act on the tooth ahead (0 to 3) and four of them take the force act on the tooth after 
(12 to 15) the analyzed tooth; in six cases the entire load acts on the analyzed tooth (5-10), and in two 
cases the load is distributed on the two teeth in contact (4 and 11) (Figure 2.). 
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Figure 2. Load model 

The initial crack is placed perpendicularly to the surface at the point where maximum principal stress 
occur in a gear tooth root for load acting in the HPSTC, and SIF history over one load cycle is 
computed. The moving load on the gear tooth is non-proportional, since the ratio of KII to KI changes 
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during the load cycle. Consequently, the maximum tangential stress theory (3) will predict a unique 
kink angle for each load increment, but herein crack’s trajectory is computed at the end of the load 
cycle. 
The procedure is as follows:  
(1) For load step from j-1 to j crack extension angle can be calculated according to MTS criterion (3): 
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where KI(jmax) and KII(jmax) are SIFs for a load case which produce larger SIF mode I on corresponding 
interval. 
(2) By means of calculated extension angles, combined stress intensity factor for jth load case can be 
calculated (4): 
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(3) Among them maximal Keq,max need to be found (which there is always when load is in the HPSTC), 
in order to calculate SIF when closure occurs:  
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(4) From Paris equation crack extension after one load cycle is: 
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(5) Since crack propagates only when Keq(j) > Kcl, so for those load steps crack extension is calculated. 
The amount of extension between load steps is proportional to the ratio of the change in equivalent 
SIF to the effective SIF 
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(6) In order to ensure that entire cycle part from crack opening to the crack closure participate in crack 
extension, the intersection between Kcl and Keq(j) curves need to be determined. When load step for 
which eq( -1) cl eq( )< <j jK K K  is determined, then eq( -1) cl=jK K , respectively when load step for which 

eq( -1) cl eq( )> >j jK K K  is determined, then eq( ) cl=jK K . As result after one load cycle crack trajectory is 
obtained, and is schematically presented in Figure 3., assuming the load cycle has been discretized 
into four steps.  
(7) The final crack trajectory is approximated by a straight line from the initial crack tip location to the 
final crack growth location. The straight line approximation has length dac, and its orientation is 
defined by the final angle θf 
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Figure 3. Schematic of crack extension after one load cycle 

Since crack extension over one load cycle is too small to update geometry model, the crack will be 
extended in θf direction with previously determined crack increment size. Finally, the crack path and 
number of loading cycles for the crack propagation to the critical length are estimated. 

3. Practical examples 
The crack propagation was analyzed on the gear wheel of the gear pair 1 (GP1), and on the pinion of 
the gear pair 2 (GP2) [Lewicki and Ballarini, 1997], with basic data given in Table 1. 

Table 1. Basic data of studied gears 
Title Symbol Gear pair 1 Gear pair 2 

Number of teeth 1 z1 11 28 
Number of teeth 2 z2 39 28 

Module m, mm 4,5 3,175 
Addendum modification coefficient 1 x1 0,526 -0,05 
Addendum modification coefficient 2 x2 0,0593 -0,05 

Gear width 1 b1, mm 32,5 6,35 
Gear width 2 b2, mm 28  6,35 

Flank angle of tool αn 24o 20o 

Radial clearance factor *c  0,35 0,35 
Relative radius of curvature of tool 

tooth  
*
fρ  0,25 0 

Addendum of tool  *
ah  1 1,05 

Dedendum of tool  *
fh  1,35 1,35 

Tip diameter da Standard clearance Standard tooth height 
 
The GP1 were made of high strength alloy steel 42CrMo4, and the GP2 were made of high strength 
alloy steel 14 NiCrMo 13-4, case carburized and ground. The teeth of the GP2 were hardened to a case 
hardness of 61 HRc (710 HV), and a core hardness of 38 HRc (375 HV), and the effective case depth 
(depth at a hardness of 50 HRc (550 HV)) was 0,78 mm. Material parameters are given in Table 2. 
Using material parameters (Table 2) and equations (2), and (6), the initial crack length for GP1 is 
estimated to be 200 μm. Since crack increment size need to be prescribed in advance, crack increment 
size is taken to be 0,2 mm up to the crack length a = 4 mm, and after this 0,4 mm to the critical crack 
length. For GP2 the initial crack length is estimated to be 10 μm, and crack increment size is taken to 
be 5 μm up to the crack length a = 25 μm, and after this 25 μm up to the crack length a = 0,2 mm, and 
after this 0,1 mm to the critical crack length. 
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Table 2. Material parameters 

  

C, 

( )
mm

cycles× MPa mm
m  m 

ΔKth, 
MPa mm  

KIc,  
MPa mm  

GP1 
42 Cr Mo 4  
AISI 4142 

173,31 10−⋅  4,16 269 2620 

GP2 14 NiCrMo 13-4    
AISI 9310 

133,128 10−⋅  2,954 122 2954 

 
Since it was believed that tooth bending fatigue cracks in GP2 would be difficult to initiate, a notch 
were fabricated in the fillet region to promote crack initiation (Figure 4.) [Lewicki and Ballarini, 
1997]. 
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Figure 4. Notch position and dimensions for GP2 

Differences in crack paths for two gear models for gear wheel of the GP1 are shown in Figure 5a., and 
differences in number of loading cycles for the crack propagation to the critical length, for different 
values of nominal torque transmitted by the gear set, are shown in Figure 5b. 

  
Figure 5. a) Comparison of crack paths Figure 5. b) Comparison of crack propagation lives 

Differences in crack paths for two gear models for pinion of the GP2 are shown in Figure 6a, and 
differences in number of loading cycles for the crack propagation to the critical length are shown in 
Figure 6b. In Figure 6a. A denotes crack path obtained numerically with load acting at the HPSTC, B 
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denotes crack path obtained with moving force model, and C is experimentally obtained crack path. 
Nominal torque for this gear set was 135,664 Nm. 
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Figure 6. a) Comparison of crack paths Figure 6. b) Comparison of crack propagation lives 

In Figure 7. number of loading cycles for the crack propagation obtained with moving force model is 
compared with number of loading cycles for the crack propagation obtained experimentally. 
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Figure 7. Comparison of crack propagation lives obtained experimentally and numerically 

4. Conclusion 
Observed differences in crack paths and number of loading cycles for the crack propagation to the 
critical length, obtained with two gear load models, are larger for gear pair 1 then for gear pair 2. 
Reason for that is primarily in contact ratio εa, which is considerably smaller for gear pair 1 
( ,1 1,256αε = ) then for gear pair 2 ( ,2 1,740αε = ). This means longer period of single tooth contact, 
causing flatter distribution of equivalent SIF during one load cycle.  
Flatter distribution of equivalent SIF means that in addition to force acting in the HPSTC, also 
neighboring load steps has significant impact on crack growth, because they values are higher then 
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value of SIF when closure occurs, and because of nonproportional load each load step propagates 
crack into different direction. 
Gear pair 2 has sharp stress distribution over one load cycle, and because of that influence of load 
steps around HPSTC is small, and crack path is primarily influenced by the load acting in the HPSTC. 
Crack closure effect is also taken into account, extending analitical model for plasticity induced crack 
closure with partial crack closure concept. In this way two other closure mechanisms: roughness and 
oxide induced crack closure are taken into account.  
By so completed numerical procedure, the predictions of crack propagation lives and crack paths in 
regard to the gear tooth root stresses are obtained, which are significantly closer to experimental 
results then existing methods. 
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