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1. Introduction 
Computer aided design (CAD) environments have provided designers with increasingly greater 
capabilities over the last few decades. Initially only two-dimensional drafting was supported. Now 
many systems work using fully three-dimensional assembly modelling together with parametric 
capabilities. They can be integrated within a company’s data management, planning and 
manufacturing facilities. Earlier CAD systems were simply repositories for geometric entities, and it 
was the user who provided the interpretation of what these represented. As systems have evolved, 
there has been a desire to make them more “intelligent” and hence be able to take some account of the 
meaning of the geometry. One of the ways which has been investigated is the use of constraints. These 
can be imposed, for example, to specify something of the function of the design by showing limiting 
relations between geometric entities, or to indicating interactions during the operation. 
The advent of feature-based CAD systems has meant that components are effectively created 
parametrically and relations between the individual geometric identities are specified (perhaps 
implicitly) while a user creates a component. This means that the component can be reconstructed in 
different forms by changing the defining parameters. The relations are essentially constraints. When a 
component is reconstructed it is necessary for the system to be able to resolve these successfully. In 
this way, constraints are applied to geometric entities, and modelling systems can take advantage of 
the fact that the forms of these are known a priori. As an example, some CAD systems have the ability 
to perform assembly of components and, more generally, simulate motion of mechanical systems and 
obtain kinematic data. Those with the appropriate analytical support can provide dynamic information. 
owever, such tools rely upon the software having specific tools built within it. There is need to allow 
more general constraints to be imposed upon a design: constraints which involve the design 
parameters but which may be dependent upon to a particular design application and so cannot be 
foreseen when the software is created. There are many examples of these. A car engine needs to be 
powerful enough to drive the vehicle and yet small enough to fit into the space available for it. There 
are often trade-offs required between performance and “cost”, as, for example, when trying to improve 
the performance of an existing machine but wishing to keep the number of new parts low. In the food 
industry, there are decisions to be made on pipe work (based upon consideration of non-Newtonian 
flow) so as to ease production without compromising the quality of the product. 
Constraints can also be used in the conceptual stages of design when the underlying geometry is not 
yet available [Deng et al 2000]. The lack of precise geometry hampers the application of conventional 
CAD techniques. Instead, the design is effectively represented (notionally rather then geometrically) 
in terms of the individual components from which it will ultimately be formed. This gives access to 
design variables in terms of the parameters and properties of the components. The components can be 
linked together so that output parameters from one act as inputs to another, as in Schemebuilder 
[Bracewell et al 1996]. There are then constraints which relate how the parameters, particularly the 
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inputs and outputs, interact and what are the limits of operation. Once an initial design has been 
obtained, the feasibility of this can be verified by checking that none of the constraints is violated. 
To investigate such general constraints, a stand-alone constraint modelling system has been created 
[Mullineux 2001]. Via a user language, design parameters can be declared and constraints imposed 
between these. These are resolved using optimisation techniques, which means that no assumptions 
are made about the form of parameters involved in the constraints. This has several advantages. One 
drawback however is that the lack of involvement with a CAD system means that geometry has to be 
imported to constraint modeller and exported from it, and there is a lack of facilities for a user to 
modify or interrogate the geometric model. The purpose of this paper is to investigate the integration 
of such a stand-alone constraint system with a commercial CAD system so that the advantages of both 
may be obtained. 
Section 2 discusses the ideas of constraints in general and section 3 introduces the stand-alone 
constraint modelling system. Section 4 shows how the applications programming interface (API) of 
the CAD system can be used to allow the constraint modeller to access the underlying geometric data 
and hence achieve a successful integration. Section 5 gives a case study example of modelling a 
machine for wrapping confectionary, and the final section gives some conclusions. 

2. Constraints 
Often in a design process, constraints exist that impose limits on what is possible within the design. 
These limits can results from many sources, ranging from customer requirements through to the 
manufacturing methods available. These constraints drive the product design process. The aim is to 
find a design solution where all the constraints are either fully satisfied or, at least, an acceptable 
comprise is achieved between them. 
In recent years, the ability to handle constraints has started to appear within commercial CAD systems 
- particularly those which are described as being feature-based. Here constraints are applied to the 
geometry of the component or components being modelled. Even when three dimensional objects are 
being created within a CAD system, the starting point for a user is often the creation of a two 
dimensional profile which is then extruded (along a straight line, circular arc, or some other curve) to 
produce a solid object. Constraints are often applied to the initial profile to insist that lines are parallel 
or perpendicular, arcs and lines are tangential, and so on. When three dimensional objects have been 
created, it is usually possible to assemble these and again constraint relations are often available. 
These might specify that faces from different objects need to be coplanar, or that lines in different 
objects are to be collinear. 
CAD systems which possess a geometric interface language can also allow further constraints to be 
defined in terms of parametric variables. For example, it may be possible to specify that the lengths of 
the sides of a rectangular block need to be in a given proportion, or that the height of a cylinder cannot 
exceed its diameter. 
However these constraints are essentially only concerned with the underlying geometry of a part or 
parts. There can be a requirement to deal with other forms of constraint. For example, there may be a 
requirement to limit the speed of motion of a part during the operation of a machine, or to ensure that 
a part is sufficiently strong to support another. 
Much research has been undertaken into the way that constraints can be identified and resolved. A lot 
of this has been directed towards constraints arising from purely geometric considerations [Bouma et 
al 1995, Anderl et al 1996, Hoffmann 2005]. Here several approaches are available. One strategy is to 
try to order the constraints so that they can be solved in sequence. An alternative is to group 
constraints together and then look to solve the underlying equations simultaneously by an appropriate 
numerical method. 
Comparatively little work has been undertaken on more general constraint-based applications. 
Presumably this is because work external to an underlying CAD system is required. In the application 
to functional design verification [Deng et al 2000], the functional description of the design is captured 
in graph form based upon the interrelation of the components as prescribed by the user. This means 
that dependency graphs for the design parameters can be created and constraint propagation methods 
employed. 
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In another approach [Hicks et al 2001], a stand-alone constraint modelling system is used to help in 
the design process for the mechanisms required in packaging machinery. While this has been 
successful, its independence from a full CAD system does bring some limitations in terms of 
modelling and displaying the underlying geometry. This means that there may be advantages in 
integrating such a stand-alone system with commercial CAD software. It is this idea that is 
investigated here. It should be noted that this may result in some overlap of capability, as both systems 
ought to be able to handle the purely geometric constraints. However, it is thought that the ability to 
impose additional forms of constraint and to have greater control over the purely geometric ones may 
offer some benefits. The stand-alone constraint modeller is discussed in the next section. 

3. Constraint modeller 
The constraint modeller is software that was created to investigate the use of constraint techniques in 
the design of mechanism and machine systems [Mullineux 2001]. Underlying it is a user interface 
language in which the parameters for a given design task can be created and manipulated. In its basic 
form, the software allows the creation of geometry in terms of three dimensional wire-frame entities 
such as lines and arcs. These are treated as parameters within the user language. 
The underlying language acts as a normal programming environment: variables can be declared, 
expressions between variables can be evaluated and graphical entities can be displayed. However, the 
system also allows constraints between parameters to be imposed. Constraints are defined as 
expressions between variables. These expressions are deemed to be true when they are zero; non-zero 
values are really a measure of the falseness of the constraint. For example, if three parameters x, y and 
z need to be constrained to have a sum equal to 6, then the following constraint rule is applied. 
 
 rule( x + y + z - 6 ); 

 
Normally several constraints are imposed together and the user specifies which of the design 
parameters can be varied in order to seek a feasible solution. The system uses optimisation techniques 
to try to resolve constraints [Ge et al 1999]. The sum of the squares of the constraint values is formed 
and a minimum is sought by manipulating the free design parameters. This has the advantage of 
finding some form of “best compromise” solution even when constraints are in conflict. 
Constraints can also be imposed between geometric entities. For example, suppose L2 and L3 are two 
lines that have been created. Within the language structure, the expression L2:e2 denotes the second 
end-point of L2. The following constraint rule 
 
 rule( L2:e2 on L3:e2 ); 

 
is used to specify that the two lines should touch at their end-points. Here on is a binary function built 
into the user language. Effectively it finds the distance between two geometric objects. When that 
distance is zero the objects coincide and hence the function can be used within constraints to define 
mating conditions. 
The approach can be used to create assemblies of components and to simulate the motion of 
mechanism systems. An assembly can be created entirely in terms of constraints such as the one 
above. However it is possible to simplify the process. Geometric entities can be grouped within model 
spaces [Leigh et al 1989]. Each space is associated with a transformation to indicate how it maps into 
world space. Alternatively, the transform can map into another model space so that a hierarchy of 
model spaces in created. This is a tree structure whose “root” is the world space. 
The hierarchy allows a partial assembly of objects to be created. When the transform of one model 
space is modified, the geometry of all spaces closer to the world is left unchanged, and all the 
geometry of spaces further away moves together. However the assembly created by the hierarchy 
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alone is only partial; typically additional constraints are required to form the full assembly. As an 
example, consider the four bar linkage illustrated in part (a) of figure 1. This shows the three moving 
links as line segments. Each line is contained in a model space and the hierarchy of these is shown in 
part (b), where W denotes the world space.  

 
Figure 1. Assembly of a mechanism 

The hierarchy ensures that lines L1 and L2 stay together. To complete the assembly, the ends of lines 
L2 and L3 needs to be joined as suggested by the dashed line in hierarchy diagram. This requires a 
constraint which is in fact precisely the one displayed above. This is imposed by allowing the system 
to vary the angles of the model spaces of lines L2 and L3. The result is the fully assembled mechanism 
shown in part (c) of figure 1. 

4. Incorporation within a CAD system 
The main purpose of this paper is to investigate the incorporation of a stand-alone constraint 
modelling system with an existing CAD package. The aim is to allow a range of constraints greater 
than that provided by the CAD package alone to be made available to a user. The NX3 software of 
Unigraphics has been used as the CAD system. This offers a number of modes of application. The 
most basic is “part modelling” in which the user creates models of individual components. Built over 
this are a number of applications. One is assembly work in which individual components are put 
together. Other applications include finite element analysis, and the creation of manufacturing 
instructions. 
This integration of the CAD package with the constraint modeller has been accomplished using Open 
API which is the application programming interface language of NX3. An application programming 
interface provides the means to interface different standards of software. Using Open API it is possible 
to integrate third party applications or programs within NX3 environment. It provides necessary 
routines, procedures, variables and data structure for the communication with different pieces of 
software. The integration has been achieved with NX3 working in its part modelling mode. 
Figure 2 shows the structure of the interfaced system. The user interaction and display is provided by 
the CAD system.  The language interpreter receives commands from the command window via this 
user interface and creates and manipulates the user variables. Expressions involving variables, that 
may include geometric objects, can be evaluated. Constraint expressions can be dealt with using the 
constraint resolver.  
The mai command handling and constraint resolving parts of the constraint modeller operate as 
previously. The main difference in the integrated system arises when geometry (solid or wire-frame) is 
created.  Here, the appropriate Open API call is made to create the object within the memory assigned 
to the CAD software. The creation is handled by NX3 itself and it returns a pointer (handle) to the 
geometric object. This is held with the constraint modelling software as the “value” of the 
corresponding design variable. 
One of the crucial needs is to be able to apply transforms determined by the constraint modeller to 
objects with the CAD system. Again Open API allows this to be done: the appropriate interface 
procedure is called, passing to it both the matrix transform and the pointer to the object. In particular, 
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in this way, the constraint modelling software can create assemblies within the CAD system and can 
then control simulations of their motion.  

Command 
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User Interface
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Other modules

 
Figure 2. CAD - constraint modeller integrated system 

At a basic level, the assembly of objects can be carried out within the CAD system itself. However, 
transferring the control to external software allows the form of the hierarchy of model spaces to be 
recast via the user language should other means of driving the system be required. It also allows other 
constraints beyond mere assembly to be imposed; for example to specify kinematic relations in terms 
of velocity and acceleration, to avoid clashes with other parts of a design, and to investigate possible 
failure conditions. 

 
Figure 3. Integrated system interface 



 DESIGN PROJECTS AND PROCESSES 630 

Figure 3 shows a screen shot of the integrated system. This shows the basic CAD screen with a simple 
mechanism displayed. The additional window is that dealing with constraint modelling commands. 

5. Case study application example 
The example presented in this section is based upon part of a sweet wrapping machine. More 
specifically, the gripper mechanism is considered. This is used to pull film out from a reel. Once a 
sufficient amount of film has been withdrawn, it is cut off. This results in a portion of film being 
positioned above the sweet to be wrapped. A separate mechanism then moves the sweet vertically 
upwards and into the film, thus starting the wrapping process. The gripper mechanism is shown in part 
(a) of figure 4. The mechanism is controlled by two cams: one effectively deals with the forward and 
backward motion, while the second is used to introduce a slight upward movement of the film as it is 
being drawn across the next sweet. 
Part (b) of the figure shows a “stick diagram” of the mechanism.  Each line represents an element of 
the mechanism and the closed curves are the driving cams. These elements are each embedded into its 
appropriate model space. As before, the model spaces hierarchy can be used to perform most of the 
assembly of the links. The assembly is completed by imposing constraints so that the two links which 
have cam followers lie on the appropriate cam. For example the constraint to position one of the cam 
followers onto its cam profile is the following. 
 

rule( camfollower1:e1 on cam1 ); 

 
In the system in which the constraint modeller is integrated with the CAD software, solid objects 
representing the links can be created. The model space hierarchy and the constraints can be used to 
assemble these (based on the stick diagram), and part (c) of figure 4 shows their assembly. Allowing 
the cams to rotate in steps and resolving the constraints at each stage produces a simulation of the 
motion. 
Such a simulation allows the track of the end of the gripper to be investigated. Because the assembly 
is determined purely by the constraints, it is possible to attempt to improve the design of the output 
motion. For example, the path of the gripper can be modified. Then the same constraints used for the 
simulation can be imposed to ensure that the gripper follows the new output; this then determines the 
profiles of the two driving cams. 

 
Figure 4. Film grip mechanism 
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6. Conclusions 
Constraints arise frequently in design work and the appearance of feature-based CAD systems means 
that constraint resolution is now an integral part of such design tools. However, such constraints can 
often only be applied to geometric entities, and constraints which express more general information 
about the functionality of a design cannot be dealt with. For these types of application more 
specialised tools are required, and these can be distinct from the CAD system. 
It has been seen that it is possible to integrate a stand-alone constraint modelling system with a 
commercial CAD package. Use has been made of the application programming interface (API) 
provided with the CAD tool. This means that the constraint modeller can define the underlying 
geometric entities and can have subsequent access to these via pointers. In particular, it is possible for 
the external modeller to apply transforms to the CAD entities and hence take control of assembly 
processes. This allows the user greater interaction with the assembly and hence provides the ability to 
investigate different arrangements.  
The combined system has been demonstrated in its use to model, assemble and simulate the action of 
part of a confectionary wrapping machine. This has allowed the motion of the end-effector to be 
investigated and improved. 
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