

METHODS AND TOOLS IN DESIGN PRACTICE 401

INTERNATIONAL DESIGN CONFERENCE - DESIGN 2006
Dubrovnik - Croatia, May 15 - 18, 2006.

THE CONCEPT OF FUNCTIONS AND INFORMATION
CONVERSION IN SOFTWARE - DESIGN METHOD
ADAPTATION IN AN INDUSTRIAL CONTEXT

M. Weigt

Keywords: method, function, software, product data, automation

1. Introduction
Solving engineering design problems aims at creating technical systems to perform specified tasks.
Re-use of existing design solutions can increase engineering design process efficiency and can
contribute to technological maturity of these design solutions. Re-use requires identification of
solutions and an evaluation of their applicability and adaptability with respect to given tasks. In this
context, the concept of functions is essential to methodical engineering design procedure, since
functions define intended purpose in a solution-neutral way, and the approach provides increased
understanding of design solutions [Pahl et al 2005].
In innovative technical systems, electronic solutions in combination with software increasingly
supplement mechanical solutions. Therefore, software component re-use offers considerable potential
for optimisation of engineering design processes, and of products. Prerequisite for efficient re-use is
availability of electronic product data. In the case of software components, this concerns for example
specifications of intended working environments, and stability and performance aspects. Especially,
comprehensive description of software functions is required, since these serve as principal criteria for
task-oriented selection. Neither methodical nor IT support is currently sufficient for re-use or
distribution by means of electronic marketplaces of software components.
To apply the concept of functions to software components, adaptation of this method is required to
consider the nature of software as an abstract logical system. To this end, this paper applies an
approach to design method development focusing information conversion to adapt the concept of
functions to the specifics of software components. A software component repository prototypically
implements the resulting method for functional specification. The industrial context for method
adaptation and prototypical implementation was the field of automation technology, but the results are
applicable in other domains as well.

2. Methodology

2.1 Analysis of method development from a process perspective
A method is a set of instructions, whose execution under given conditions sufficiently ensures the
achievement of an intended objective [Mueller 1990]. A process is a set of activities that uses
resources to transform inputs into outputs [ISO 9000:2000]. According to this, a method is a
description of a set of activities, i.e. an abstraction of a process. Its purpose is to provide support for
operators in processes. At the same time, a method is an (intangible) product, which is the result of a
(method development) process. In this context, the term meta-method refers to methodical support of
method development processes, i.e. a meta-method is an abstraction of a method development process.

 METHODS AND TOOLS IN DESIGN PRACTICE 402

This analysis results in the distinction of three different levels of abstraction in the context of method
development. Their distinction facilitates the identification of conditions that are constitutive for
method development, adaptation, implementation, and application (Figure 1).

OutputsOutputs

OutputsOutputs

Meta-Method

Method development process

Activity Activity Activity Activity

OutputsOutputs

Operative process

InputsInputs
Activity Activity Activity Activity

Method adaptation and implementation
(organisational and operational structure)

Concretion of setting

Concretion of setting

Application level

Object-level

Meta-level

Generic application situationGeneric application situation

Abstract problem situationAbstract problem situation

Concrete application situationConcrete application situation

Application level

Object-level

Meta-level

Generic application situationGeneric application situation

Abstract problem situationAbstract problem situation

Concrete application situationConcrete application situation

Method

Support of operative activities(Indirect) Support of process management activities

Figure 1. General context of method development

At application level, operators face concrete tasks, e.g. the development of one concrete product. Such
tasks constitute concrete application situations. Methods are supposed to be invariant for a certain
class of tasks [Mueller 1990]. For this reason, method development usually considers generic
application situations, e.g. product development tasks per se. Such generic application situations
instantiate abstract problem situations.
Methodical support at application level is required to work twofold. On the one hand, methodical
support aims at individuals performing operative problem solving activities within operative
processes. On the other, it is required to support process management activities. Process management
often employs decision gates, i.e. generic descriptions of information to which the results of operative
activities are compared for the purpose of decision-making [ISO/TS 16949].

2.2 Framework for process-oriented method development based on information conversion
In this context, a process-oriented approach to method development is proposed, which focuses on
concrete information at application level, on information properties at object-level, and on abstract
information conversion aspects at meta-level. These information conversion aspects are
organisational, technological and psychological aspects of information conversion. They are referred
to as fluency, form and content, since they are interrelated mainly to communicating, representing and
processing of information, respectively.
The approach applied in this paper structures the process of method development, adaptation and
implementation according to the generic information conversing activities analysis, acquisition,
consolidation, and definition. In the stage of method development, the principal focus of these
activities is on information conversion. In the stage of method adaptation and implementation, it is on
resources, shifting from qualitative aspects (resource capabilities) to quantitative aspects (resource
capacity) (Figure 2).
The resulting meta-methodical framework3 proposes an iterative procedure for method development,
consisting of a sequence of principal activities applied to information conversion, with the focus

3 This framework and its application are discussed in more detail in [Weigt 2005].

METHODS AND TOOLS IN DESIGN PRACTICE 403

shifting from fluency to form to content. As a result, the procedure considers organisational
requirements and those regarding the handling of information before the actual information
processing. The procedure starts with an analysis of the process boundaries and interfaces, and a rough
outline of input information properties. This provides foundation for specification of further input
acquisition and input consolidation steps, which allows outlining transformation activities (definition)
and output consolidation steps. The result is a conceptual method schema, i.e. a schematic outline of
operations that describe how to transform input into output. Iterative refinement of this schema
considering information properties will then result in an increasingly detailed network of information
conversing operations that are logically interrelated by information flows. This procedure therefore
helps to establish a stepwise transition from “what” a method is supposed to achieve towards “how” to
achieve this.

Continual
optimisation

Development Adaptation and implementation

Method
Operative processOperative process

Analysis

Definition

Acquisition

Pr
in

ci
pa

l a
ct

iv
iti

es

ResourcesInformation
Principal focus

Consolidation Q
ua

nt
ita

tiv
e

Q
ua

lit
at

iv
e

task-specific corporateConstraints

Fl
ue

nc
y

C
on

te
nt

Fo
rm

Figure 2. Meta-methodical framework

Focusing on information properties leads to an increased transparency of working principles of
methods. This facilitates assessment of applicability of existing methods and their adaptation. It also
improves method usability and acceptance, and effectiveness and efficiency of their practical
application. The proposed meta-methodical framework can therefore serve as an appropriate
foundation for adapting the concept on functions to software components.

3. Functional specification of software components

3.1 Problem analysis
Software is an algorithm formulated by measures of programming. It is therefore a specific type of
method, whose supportive properties result from interaction with hardware and generally other
software within a working environment. The automation technology applications focused in this paper
are usable in variable working environments (personal computers or programmable logic controllers),
as long as these meet specific standards. The approach does not consider embedded applications.
Software is not a physical product, but an abstract logical system. It implements logical statements of
the form {P}S{Q}: If a precondition P is true, by execution of the program S the postcondition Q
becomes true. Physical effects and laws are only relevant for software components as environmental
conditions. Analysis is not the mathematical foundation of software development, but instead
combinatorics, mathematical logic and algebra.
A function is defined as the desired input-output relationship of a definite and limited system, whose
purpose is to perform a task [Pahl et al 2005]. Since software is not a physical system, physical effects
and corresponding mathematical interrelations do not provide appropriate foundation for its functional
specification. In a working principle-oriented perspective, inputs and outputs of software applications
are data processed by means of an algorithm. A functional perspective onto technical systems requires
the interpretation of this data in the context of the given task, providing meaning for the data.
Therefore, against the background of functional specification, software can be considered an

 METHODS AND TOOLS IN DESIGN PRACTICE 404

information conversing system, and it is advisable to specify function, inputs, and outputs in the
context of the task. While quantitative limitations to information conversion in software exist due to
availability of computing time and memory, qualitative limitations do not exist per se.
Overall functions of software applications in automation technology result from the interconnection of
so-called function blocks managed in libraries. These function blocks provide basic building blocks
for control technologies [IEC 61131-3]. The resulting software is configurable, i.e. setting of certain
parameters influences the functional behaviour of the building blocks and the entire software.
Configurability specifically includes activation and de-activation of specific sub-functions.
The concept of working principles is well established in engineering design methodology. Principle
properties of physical systems result from physical principles in combination with form design
features [Pahl et al 2005]. Principle properties of software result from types of algorithms and types of
data structures processed. Their combination provides a conceptual equivalent to the working
principle of physical systems. Specification of function blocks according to [IEC 61131-3] is
independent from tasks. Inputs and outputs state parameter names instead of what these inputs and
outputs represent in the context of tasks. For this reason, these function blocks are more similar to the
concept of working principles than to the concept of functions in engineering design methodology.

3.2 Method for the functional specification of software components
Consideration of fluency aspects of information conversion is not required in the context of this paper.
It concerns a sub-process with specific process interfaces, which do not impose relevant constraints
for its integration into the greater organisational and operational structure of the company.
At the cooperating company, the principal input information for functional specification is source
code, including varying degree of textual commentary. Instruction list (IL) [IEC 61131-3] is the
programming language used. IL is a procedural language similar to Assembler. Readability of IL code
for human users is limited, especially when optimised for time-critical applications. This imposes a
form-related corporate constraint to method development. Insufficient transparency is a form-related
input information property that is important in the context of this paper. Increasing transparency
requires input information consolidation with respect to form. Constructing program flow charts can
achieve this. This graphical-textual representation increases readability and understanding of structure
and purpose of the source code (Figure 3).

MCRA ;
SET ;
R #qlmn_hlm;
R #qlmn_llm;
MCRD ;

L #lmn_llm;
L #uk;
<=R ;
SPB m51;
POP ;
T #uk;
L #uikm1s;
L #uik;
<=R ;
SPB m50;
POP ;
T #uik;

m50: MCRA ;
SET ;
S #qlmn_llm;
MCRD ;

a) IL code b) Program flow chart

Figure 3. Excerpt from IL code and corresponding program flow chart

The following content-related task-specific constraints are essential for the adaptation of the concept
of functions to software components:

• Software is not a physical system.
• No qualitative limitations exist to information conversion in software.
• The task of functional analysis and specification is typically of high complexity.
• The functional behaviour of software is highly configurable.

METHODS AND TOOLS IN DESIGN PRACTICE 405

Since Software is not a physical system, neither physical effects nor form design features are directly
relevant for the functional behaviour of software components. Generic properties of inputs and
outputs, which are influenced by means of the information conversion within the software, cannot be
meaningfully provided independently from the context of the task. Therefore, instead of the context-
independent concepts of physical effect-oriented special functions [Roth 2000] or input/output
property-oriented generally valid functions [Pahl et al 2005], task-specific functions [Pahl et al 2005]
can serve as a foundation for the functional specification of software components.
Task specific functions derive directly from the task. Their problem-oriented formulation uses
technical common speech. This provides the benefit of not being limited to a specific set of technical
verbs and/or physical terms. Technical common speech can therefore appropriately specify
information conversion in software, which is subject to no qualitative limitations.
The concept of functions in engineering design methodology proposes hierarchical structuring as a
means of making manageable complexity. To manage the high complexity of analysis and
specification tasks, hierarchical structuring is an appropriate means in the case of software
components as well. However, resource-oriented optimisation measures may lead to discrepancies
between concrete code structure and abstract function structure.
Software components typically not only fulfil a set function. Their function can be highly
configurable, and the software can advise about its functional behaviour. This makes advisable to
distinguish between configuration-related control flow and processing-related data flow when defining
the relations between the elements of a software function structure.
In the context of time-related synchronisation of program execution in distributed working
environments, [IEC 61499-1] distinguishes between data flow and event flow. This standard provides
a graphical notation that depicts function blocks with a separate execution control “head” and
corresponding event inputs and outputs. Even though this event flow does not relate to functional
configurability, this type of graphical representation can be suitably adapted to distinguish between
configuration-related control flow and processing-related data flow in a software function structure
(Figure 4).

CI1

DI1

CO1

DO1

DO2

1

1

3

3

3

a) Elements b) Relations

FunctionI1
I2
I1
I2

CI1 CO1

DI1

Controlling

Processing

Configuring Advising

Processing

DO1

DO2

CI1 CO1

DI1

Controlling

Processing

Configuring Advising

Processing

DO1

DO2

O1
O2
O3

2

2

2

2

Sub-function 1
Sub-function 2

Sub-function 3

1

3
2

Relation “Shell In“: IOF ISF,x

Relation “Core“: OOF,x ISF,y

Relation “Shell out“: OSF,x OOF

1

3
2

Relation “Shell In“: IOF ISF,x

Relation “Core“: OOF,x ISF,y

Relation “Shell out“: OSF,x OOF

CI/CO: Control input/output
DI/DO: Data input/output

Figure 4. Elements and relations of software function structures

Sub-functions are elements of a software function structure. Their inputs and outputs are data inputs
(DI), data outputs (DO), control inputs (CI) and control outputs (CO). DI and DO constitute the data
flow. It carries data that is algorithmically processed, e.g. process parameters. Inputs and outputs that
are essential for functional specification are usually part of the data flow. Their identification enables
functional specification based on their processing (e.g. “suppress low control deviations”) in addition
to task-oriented functional specification (e.g. “stabilize controller”). The control flow supports
structured specification of functional configurability. CI directly influence the functional behaviour of
the software, while CO advise about it. Relations of the software function structure interconnect the
inputs and outputs of overall function (OF) and sub-functions (SF), and of sub-functions among each
other. Shell relations link sub-functions to the overall function. Core relations interconnect outputs and
inputs of sub-functions.

 METHODS AND TOOLS IN DESIGN PRACTICE 406

The application context provides direction to determine the adequate degree of resolution of software
function structures. In the case of development of new software applications, adequate degree of
resolution depends on novelty of the task and on existence of solutions available for re-use. In the case
of functional analysis and specification of existing solutions, the adequate degree of resolution
depends on the degree of code optimisation: Resource-oriented boundary conditions motivate
optimisation of time-critical applications, not the task per se. For this reason, with increasing degree of
resolution, discrepancies arise between (resource-oriented) source code and (task-oriented) function
structure. Beyond a certain degree of resolution, these discrepancies prevent re-use or adaptation for
similar tasks with justified effort. Determination of this degree of resolution requires individual
evaluation. As an example for a suggested degree of resolution, a function structure of a PID loop
controller software is depicted in Figure 5.

×
Determine
proportionality
component

Σ Determine overall
manipulated value

Δ Determine
control deviation

1-element
FIFO

11

Maintain high
limit of
manipulated value

Determine
integral
component∫

Stabilize controller

Controlled
1-element
FIFO

11

Maintain low
limit of
manipulated value

Determine
derivative
componentt∂

∂

×

Σ

1111

1111

t∂
∂
t∂

∂

Manipulated value high limit
Manipulated value low limit

Derivative action on

Integral action on

Derivative time

Sample time
Reset time

Proportional gain

High limit
reached

Low limit
reached

Manipulated
value

Proportionality
component

In
te

gr
al

co
m

po
ne

nt

Derivative
component

∫∫

PID_EXT_1

Control deviation

Dead band width

Process value

Setpoint
Δ

Figure 5. Function structure of a PID loop controller software

This function structure facilitates a structured functional specification, with significantly reduced
complexity of sub-functions as compared to the overall function. This function structure increases
understanding of mode of operation and behaviour of the software. For example, interrelations
between reaching higher and lower limits of the manipulated value and the integral action become
transparent. Specifications of the respective sub-functions indicate halting of the integral action, and
state the concrete conditions. Thus, this structured specification facilitates evaluation of applicability
and adaptability of the software component to a given task.
Depending on software component complexity, their functional analysis and specification can require
considerable effort. However, methodical development of new applications implicitly produces
significant part of the necessary information: Task clarification includes a definition of the overall
function. Specification of sub-functions and their interconnections reduces complexity of the
development task, and is required for distributed development (function structure). Potential procedure
within a program is defined (flow chart), as well as the program interfaces (inputs and outputs).
Therefore, integration of the proposed method into methodical software development processes can
significantly reduce required effort for functional analysis and specification.

4. Prototypical implementation
The proposed method for functional specification of software components is part of the prototypical
software component repository Software Product Data Browser (SoftPDB). Basis of this web-based
application is a hierarchical structure of software product characteristics. The hierarchy results from
analysis of the product environment in the corporate and application context, throughout the product
life phases, and from abstraction to principle and functional aspects. Among others, the hierarchy

METHODS AND TOOLS IN DESIGN PRACTICE 407

includes descriptions of algorithms and data structures, specifications of intended working
environments (hardware and other software), organisational aspects of software development and
distribution, and technical conditions specific to the different product life phases.
To identify potential solutions, elements and relations of function structures serve as main search
criteria. With regard to potential ambiguities of task-specific function formulation using technical
common speech, the repository features a semantic editor based on the WordNet lexical database
[Fellbaum 1998]. Using this editor, users can provide definitions for terms used in designations and
descriptions of overall functions and sub-functions, and their respective inputs and outputs (Figure 6).

Figure 6. Specification of sub-functions of a PID loop controller using the semantic editor

The semantic editor also enables the user to provide definitions for terms used in searches. Queries to
the repository then do not compare terms, but definitions only. The semantic editor therefore
facilitates effective use of synonyms and reduces the number of unsuitable matches.
Following identification of potential solutions, comparing their properties to requirements of the task
allows evaluating their applicability. This particularly concerns best-case and worst-case software
execution times in combination with different CPU types, determined by means of code analysis and
CPU benchmarking.

5. Summary and conclusion
Re-use of design solutions can increase engineering design process efficiency and can contribute to
the solutions’ technological maturity. In the course of technical advancement, the importance of
software components in technical systems increases in comparison to mechanical and electronic
hardware. Methodical and IT support for standardised structured description of software products are
currently not sufficient for internal re-use or electronic marketplaces.
This paper presents a web-based software component repository that can serve as an electronic data
sheet for software components. As such, it can contribute to the electronic generation and continuous
transfer of product data. The underlying hierarchy of software product characteristics is life cycle-

 METHODS AND TOOLS IN DESIGN PRACTICE 408

oriented and follows established methods of systematisation and abstraction from engineering design
methodology. The repository can therefore serve as a comprehensive foundation for structured
documentation of software, its functions, working principles, and other particularities throughout the
product life. Specifically, the hierarchy of software product characteristics can structure and guide the
compilation of requirements lists for software development.
To facilitate identification of solutions and evaluation of their applicability and adaptability with
respect to given tasks, the repository employs the concept of task-specific functions. This concept
from engineering design methodology has been adapted to consider specifics of software as a logical
system. A process-oriented approach to method development with a focus on information conversion
provided support for this method adaptation. The resulting method for functional specification
facilitates the structured analysis and description of software components, by making transparent the
underpinning logic and making manageable the complexity of the specification task.
The method for functional specification and the software component repository are a result from
cooperation with industry in the context of automation technology. However, application in other
domains is possible, as long as the relevant constraints are sufficiently similar.

Acknowledgement
This paper includes results of the research project “Functional Specification in Automation Technology”
(Transfer Unit 48). The project was carried out in cooperation with Siemens AG Automation and Drives and
was funded by the German Research Foundation (DFG).

References
Fellbaum, C. (Ed.), “WordNet: An Electronic Lexical Database”, MIT Press Cambridge, 1998.
IEC 61131-3, “Programmable controllers – Part 3: Programming languages”, 2003.
IEC 61499-1, “Function blocks – Part 1: Architecture”, 2005.
ISO 9000:2000, “Quality management systems – Fundamentals and vocabulary”, 2000.
ISO/TS 16949, “Qualitaetsmanagementsysteme – Besondere Anforderungen bei Anwendung ISO 9001:2000
fuer die Serien- und Ersatzteilproduktion in der Automobilindustrie”, Beuth Berlin, 2002.
Mueller, J., “Arbeitsmethoden der Technikwissenschaften”, Springer Berlin, 1990.
Pahl, G., Beitz, W., Feldhusen, J. & Grote, K. H., “Konstruktionslehre”, Springer Berlin, 2005.
Roth, K., “Konstruieren mit Konstruktionskatalogen. Bd. 1. Konstruktionslehre”, Springer Berlin 2000.
Weigt, M., “An information-centred approach to the development and implementation of design methods”, Proc.
of the 15th International Conference on Engineering Design ICED 2005, Samuel, A. & Lewis, W. (Eds.),
Melbourne, 2005.

Dipl.-Ing. Markus Weigt
Universitaet Karlsruhe (TH)
Institute for Information Management in Engineering (IMI)
(formerly: Institute for Applied Computer Science in Mechanical Engineering (RPK))
76128 Karlsruhe, Germany
Tel.: +49 721 608-7958
Fax.: +49 721 661138
Email: markus.weigt@imi.uni-karlsruhe.de
URL: http://www.imi.uni-karlsruhe.de

